
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition

Solutions 4
Fall 2013

Assigned: Tuesday, September 24, 2013 Due: Thursday, October 03, 2013

Reading: NNPR Chapter 3

Problem 4.1

The optimal classifier, denoted by fB(x), is the classifier that minimizes the expected Bayes risk

fB(x) = arg min
f
EY |X=x[L(y, f(x))]

in this case, L(y, f(x)) = max(0, 1− yf(x)). Furthermore, y ε {−1, 1} hence

fB(x) = arg min
f

[max(0, 1 + f(x))P (y = −1|x) +max(0, 1− f(x))P (y = 1|x)]

The cases f(x) ≥ 1 and f(x) ≤ −1 are trivial (it is easy to see that the optimum is always at 1 or −1,
respectively). Hence, we consider −1 ≤ f(x) ≤ 1:

fB(x) = arg min
f

[1 + f(x)(1− 2P (y = 1|x))]

and fB(x) = arg maxk ε {−1,1} P (y = k|x) is the same as the Bayes optimal for the 0-1 loss. This indicates
that not only is the hinge loss an upper bound on the 0-1 loss, but an unconstrained minimization of its
risk also results in the MAP rule. Of course, in most practical settings, we are interested in constrained
problems; for example, a linear classifier of the form f(x) = wTx+ w0.

Matlab Exercises

Problem 4.2

Table 1 displays the classification error for all four methods, averaged across 100 random trials. As indi-
cated, a simple linear classifier outperforms all of the other approaches. The advantages and disadvantages
of the four algorithms are outlined in Table 2.

(c) In this case, a modest step size of 0.001 was selected; in practice, an adaptive step size that starts
off large and gradually decreases also works well. The criterion selected for convergence here is a threshold
on the training set classification error (stop learning if w can classify the training set sufficiently well). Al-
ternatively, one could also threshold the change in the weight vector, w. In either case, it is good practice
to renormalize the weight vector so that w does not expand into regions in which the gradient is trivial [i.e.
regions in which 1− tanh(.)2 is 0].

(d) Again, a step size of 0.001 was used for the perceptron update and the training set classification
error was used as the stopping criterion. When the threshold is set to 0 (i.e. stop when classification er-
ror on the training set is 0), the algorithm does not converge; hence, the training set is not linearly separable.

(e) See Table 2 for a general overview

Solutions 4 2

Table 1: Average classification error across 100 random trials
classifier average error standard deviation

least squares 0.23 0.03
1-nearest neighbor 0.29 0.03

tanh(.) nonlinearity 0.28 0.04
perceptron 0.35 0.08

Table 2: Advantages and disadvantages of the four classifiers
classifier advantages disadvantages

least squares Extremely simple to train Cost function can penalize correct cases
no additional parameters to tune

k-nearest neighbor Simple to implement Classifier is a function of the training set
value of k needs to be tuned

tanh(.) Arbitrarily close approximation to the 0-1 loss gradient descent
(sensitive to initialization)

perceptron Upper bound on the 0-1 loss Poor performance
simple update rule (when data are not linearly separable)

useful test for linear separability

function results = runexps(numtrials)

%runexps(numtrials) runs numtrials independent experiments for this

%problem set

%results contains results for 1) KNN, 2) least squares, 3) gradient descent

%with tanh(.) nonlinearity, and 4) the perceptron algorithm

results = zeros(4, numtrials);

load diabetes_normalized.mat

diab_labels = diabetes_normalized(:,1);

diab_features = diabetes_normalized(:,2:9);

numsamples = length(diab_labels);

numtrain = ceil(numsamples*0.8);

numtest = numsamples - numtrain;

for i = 1:numtrials

randinds = randperm(numsamples); %random partitioning of the entire dataset

traininds = randinds(1:numtrain); %first 80% is training data

testinds = randinds(numtrain + 1: numsamples); %next 20% is test data

mytraindata = diab_features(traininds,:);

mytraindatabias = [mytraindata ones(numtrain, 1)]; %include the bias term

mytestdata = diab_features(testinds, :);

mytestdatabias = [mytestdata ones(numtest, 1)];

y_train = diab_labels(traininds);

y_test = diab_labels(testinds);

%Linear classifier

%learn the classifier

w_linear = ((mytraindatabias’*mytraindatabias)) \ (mytraindatabias’*y_train);

%classify test points

Solutions 4 3

y_linear = 2.*(mytestdatabias*w_linear >= 0) - 1;

%compare with true labels

results(1,i) = sum(y_linear ~= y_test)/length(y_test); %compute and record the error

%Knn classifier with k = 1

y_1nn = knn_classify(1, mytestdata, mytraindata, y_train);

results(2,i) = sum(y_1nn ~= y_test)/length(y_test);

%gradient descent with tanh(.) activation function

w_tanh = graddesc(mytraindatabias, y_train, 0.001, 0.28);

y_tanh = 2.*(mytestdatabias*w_tanh >= 0) - 1;

%compare with true labels

results(3,i) = sum(y_tanh ~= y_test)/length(y_test); %compute and record the error

%the perceptron algorithm (hinge loss)

w_perc = perceptron(mytraindatabias, y_train, 0.001, 0.28);

y_perc = 2.*(mytestdatabias*w_perc >= 0) - 1;

%compare with true labels

results(4,i) = sum(y_perc ~= y_test)/length(y_test); %compute and record the error

end

k-nn classifier:

function knn_labels = knn_classify(k, mytestdata, mytraindata, y_train)

%this function classifies labels based on the knn classificaton rule

numtest = size(mytestdata, 1);

knn_labels = zeros(numtest, 1);

for i = 1:numtest %for each test point

testpt = mytestdata(i,:);

numtrain = size(mytraindata, 1);

thedists = zeros(numtrain, 1);

for j = 1:numtrain

thedists(j) = norm(testpt - mytraindata(j,:));

end

[~,closestpts] = sort(thedists, ’ascend’);

if sum(y_train(closestpts(1:k))) >= 0

knn_labels(i) = 1;

else

knn_labels(i) = -1;

end

end

Gradient descent with tanh(.) activation function:

function w = graddesc(traindata, trainlabels, eta, threshold)

%given the training data and labels, graddesc computes the optimal weight

%vector for a linear classifier y = w’x + b with a tanh(.) non-linearity

Solutions 4 4

%using gradient descent

[~, numfeats] = size(traindata);

w = randn(numfeats, 1); %initialize to something small

w = w./norm(w);

while 1

%gradient update

w = w + eta*traindata’*((trainlabels - tanh(traindata*w)) .* (1-tanh(traindata*w)).^2);

w = w./norm(w); %make sure w is not too large

y = 2.*(traindata*w >= 0) - 1; %classify training set

if sum(y ~= trainlabels)/length(trainlabels) < threshold

break;

end

end

The perceptron algorithm:

function w = perceptron(traindata, trainlabels, eta, threshold)

%Performs gradient descent using the hinge loss (perceptron algorithm)

[~, numfeats] = size(traindata);

w = randn(numfeats, 1); %initialize to something small

%note: w can also be initialized based on the training labels

w = w./norm(w);

while 1 %keep updating

y = 2.*(traindata*w >= 0) - 1; %classify training set

errorlocs = (y ~= trainlabels); %where do we make an error?

if (sum(errorlocs) > 0) % if we make at least one error

w = w + eta.*traindata(errorlocs,:)’*trainlabels(errorlocs);

else

disp(’linearly separable’);

break;

end

if sum(errorlocs)/length(errorlocs) < threshold %convergence criterion

break;

end

end

