Problem 4.1

The optimal classifier, denoted by $f_B(x)$, is the classifier that minimizes the expected Bayes risk

$$f_B(x) = \arg \min_f E_{Y|X=x}[L(y,f(x))]$$

in this case, $L(y,f(x)) = \max(0,1-yf(x))$. Furthermore, $y \in \{-1,1\}$ hence

$$f_B(x) = \arg \min_f \left[\max(0,1+f(x))P(y=-1|x) + \max(0,1-f(x))P(y=1|x) \right]$$

The cases $f(x) \geq 1$ and $f(x) \leq -1$ are trivial (it is easy to see that the optimum is always at 1 or -1, respectively). Hence, we consider $-1 \leq f(x) \leq 1$:

$$f_B(x) = \arg \min_f [1 + f(x)(1 - 2P(y=1|x))]$$

and $f_B(x) = \arg \max_{k \in \{-1,1\}} P(y=k|x)$ is the same as the Bayes optimal for the 0-1 loss. This indicates that not only is the hinge loss an upper bound on the 0-1 loss, but an unconstrained minimization of its risk also results in the MAP rule. Of course, in most practical settings, we are interested in constrained problems; for example, a linear classifier of the form $f(x) = w^T x + w_0$.

Matlab Exercises

Problem 4.2

Table 1 displays the classification error for all four methods, averaged across 100 random trials. As indicated, a simple linear classifier outperforms all of the other approaches. The advantages and disadvantages of the four algorithms are outlined in Table 2.

(c) In this case, a modest step size of 0.001 was selected; in practice, an adaptive step size that starts off large and gradually decreases also works well. The criterion selected for convergence here is a threshold on the training set classification error (stop learning if w can classify the training set sufficiently well). Alternatively, one could also threshold the change in the weight vector, w. In either case, it is good practice to renormalize the weight vector so that w does not expand into regions in which the gradient is trivial [i.e. regions in which $1 - \tanh(.)^2$ is 0].

(d) Again, a step size of 0.001 was used for the perceptron update and the training set classification error was used as the stopping criterion. When the threshold is set to 0 (i.e. stop when classification error on the training set is 0), the algorithm does not converge; hence, the training set is not linearly separable.

(e) See Table 2 for a general overview
Table 1: Average classification error across 100 random trials

<table>
<thead>
<tr>
<th>classifier</th>
<th>average error</th>
<th>standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>least squares</td>
<td>0.23</td>
<td>0.03</td>
</tr>
<tr>
<td>1-nearest neighbor</td>
<td>0.29</td>
<td>0.03</td>
</tr>
<tr>
<td>tanh(.) nonlinearity</td>
<td>0.28</td>
<td>0.04</td>
</tr>
<tr>
<td>perceptron</td>
<td>0.35</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table 2: Advantages and disadvantages of the four classifiers

<table>
<thead>
<tr>
<th>classifier</th>
<th>advantages</th>
<th>disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>least squares</td>
<td>Extremely simple to train</td>
<td>Cost function can penalize correct cases</td>
</tr>
<tr>
<td></td>
<td>no additional parameters to tune</td>
<td></td>
</tr>
<tr>
<td>k-nearest neighbor</td>
<td>Simple to implement</td>
<td>Classifier is a function of the training set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value of k needs to be tuned</td>
</tr>
<tr>
<td>tanh(.)</td>
<td>Arbitrarily close approximation to the 0-1 loss</td>
<td>gradient descent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(sensitive to initialization)</td>
</tr>
<tr>
<td>perceptron</td>
<td>Upper bound on the 0-1 loss</td>
<td>Poor performance</td>
</tr>
<tr>
<td></td>
<td>simple update rule</td>
<td>(when data are not linearly separable)</td>
</tr>
<tr>
<td></td>
<td>useful test for linear separability</td>
<td></td>
</tr>
</tbody>
</table>

function results = runexps(numtrials)

%runexps(numtrials) runs numtrials independent experiments for this
%problem set
%results contains results for 1) KNN, 2) least squares, 3) gradient descent
%with tanh(.) nonlinearity, and 4) the perceptron algorithm
results = zeros(4, numtrials);
load diabetes_normalized.mat
diab_labels = diabetes_normalized(:,1);
diab_features = diabetes_normalized(:,2:9);
umsamples = length(diab_labels);
numtrain = ceil(numsamples*0.8);
numtest = numsamples - numtrain;
for i = 1:numtrials
 randinds = randperm(numsamples); %random partitioning of the entire dataset
 traininds = randinds(1:numtrain); %first 80% is training data
 testinds = randinds(numtrain + 1: numsamples); %next 20% is test data
 mytraindata = diab_features(traininds,:);
 mytraindatabias = [mytraindata ones(numtrain, 1)]; %include the bias term
 mytestdata = diab_features(testinds, :);
 mytestdatabias = [mytestdata ones(numtest, 1)];
 y_train = diab_labels(traininds);
 y_test = diab_labels(testinds);
 %Linear classifier
 %learn the classifier
 w_linear = ((mytraindatabias'*mytraindatabias) \ (mytraindatabias'*y_train);
 %classify test points
y_linear = 2.*(mytestdatabias*w_linear >= 0) - 1;
%compare with true labels
results(1,i) = sum(y_linear ~= y_test)/length(y_test); %compute and record the error

%Knn classifier with k = 1
y_1nn = knn_classify(1, mytestdata, mytraindata, y_train);
results(2,i) = sum(y_1nn ~= y_test)/length(y_test);

%gradient descent with tanh(.) activation function
w_tanh = graddesc(mytraindatabias, y_train, 0.001, 0.28);
y_tanh = 2.*(mytestdatabias*w_tanh >= 0) - 1;
%compare with true labels
results(3,i) = sum(y_tanh ~= y_test)/length(y_test); %compute and record the error

%the perceptron algorithm (hinge loss)
w_perc = perceptron(mytraindatabias, y_train, 0.001, 0.28);
y_perc = 2.*(mytestdatabias*w_perc >= 0) - 1;
%compare with true labels
results(4,i) = sum(y_perc ~= y_test)/length(y_test); %compute and record the error
end

k-nn classifier:

function knn_labels = knn_classify(k, mytestdata, mytraindata, y_train)
%this function classifies labels based on the knn classificaton rule
numtest = size(mytestdata, 1);
knn_labels = zeros(numtest, 1);

for i = 1:numtest %for each test point
 testpt = mytestdata(i,:);
 numtrain = size(mytraindata, 1);
 thedists = zeros(numtrain, 1);
 for j = 1:numtrain
 thedists(j) = norm(testpt - mytraindata(j,:));
 end

 [~,closestpts] = sort(thedists, 'ascend');
 if sum(y_train(closestpts(1:k))) >= 0
 knn_labels(i) = 1;
 else
 knn_labels(i) = -1;
 end
end

Gradient descent with tanh(.) activation function:

function w = graddesc(traindata, trainlabels, eta, threshold)
%given the training data and labels, graddesc computes the optimal weight
%vector for a linear classifier \(y = w'x + b \) with a tanh(.) non-linearity
% using gradient descent
[~, numfeats] = size(traindata);
w = randn(numfeats, 1); % initialize to something small
w = w./norm(w);

while 1
 % gradient update
 w = w + eta*traindata'*((trainlabels - tanh(traindata*w)) .* (1-tanh(traindata*w)).^2);
w = w./norm(w); % make sure w is not too large

 y = 2.*(traindata*w >= 0) - 1; % classify training set
 if sum(y ~= trainlabels)/length(trainlabels) < threshold
 break;
 end
end

The perceptron algorithm:

function w = perceptron(traindata, trainlabels, eta, threshold)
% Performs gradient descent using the hinge loss (perceptron algorithm)
[~, numfeats] = size(traindata);
w = randn(numfeats, 1); % initialize to something small
% note: w can also be initialized based on the training labels
w = w./norm(w);

while 1 % keep updating
 y = 2.*(traindata*w >= 0) - 1; % classify training set
 errorlocs = (y ~= trainlabels); % where do we make an error?

 if (sum(errorlocs) > 0) % if we make at least one error
 w = w + eta.*traindata(errorlocs,:)'*trainlabels(errorlocs);
 else
 disp('linearly separable');
 break;
 end

 if sum(errorlocs)/length(errorlocs) < threshold % convergence criterion
 break;
 end
end