
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition

Solutions 3
Fall 2013

Assigned: Thursday, September 12, 2013 Due: Tuesday, September 24, 2013

Reading: NNPR Chapters 2 & 3

Problem 3.1

p(X|Y = 1) and p(X|Y = −1) are uniform distributions over the unit disks (2, 0) and (−2, 0) respectively.
Let n be the number of training examples, and suppose we have at least one of them – that is, n ≥ 1. The
1-nearest neighbor rule is always correct as long as there is at least one training example in each class. Given
the geometry of the problem, any point within a particular disk is closer to a point in the disk than any
point in the other disk (the distance between the two disks is 2). Hence, the only way 1-NN makes a mistake
is if all the training points are in the other class.

The 3-NN classifier is wrong in the case of 1-NN, but it is also wrong when there is only one point in the
correct class. Hence, the probability of error for 3-NN is greater and its risk is greater than that of 1-NN.

Problem 3.2

(a) The linear discriminant between classes Ci and Cj is given by {x : ‖x − µi‖ = ‖x − µj‖}, which is
equivalent to {x : (x − µi)

T (x − µi) = (x − µj)
T (x − µj)}. After some algebra, it is clear that this is

equivalent to

{x : (µj − µi)
Tx− 1

2
(µj − µi)

T (µj + µi) = 0}

hence wij = µj − µi and bij = 1
2 (µj + µi)

(b) This is identical to a linear discriminant with a Mahalanobis distance determined by Σ. Hence w1k =
Σ−1(µk − µ1) and b1k = 1

2 (µk + µ1).

P (C1|x) =

(
1 +

K∑
k=2

e−f1k(x)

)−1

and
f1k(x) = −lnπk

π1
− wT

1k(x− b1k)

Matlab Exercises

Problem 3.3

It is clear that as N increases, our estimator gets better – both visually and in the mean-squared sense.
The bandwidth plays a crucial role in smoothing the density, and when it is too large (e.g. three times the
optimal), there is an oversmoothing effect, and when it is too small, we can almost witness the individual

Solutions 3 2

Figure 3.3-1: Density estimates for different scenarios

data spikes. Since the kernel we use is two-sided, the estimate naturally bleeds over to negative values of x
when we have either oversmoothed or when we have too few examples; however, the discontinuity at x = 0
is captured well for large N and an appropriate choice of h. Note that our choice of h depends on the
sample standard deviation, which is not universally unbiased – given some additional information about the
distribution, we can indeed select a better value for h.

function randsamples = randgen(mypdf, numsamples)

%Given a pdf mypdf and the number of samples, numsamples, randgen(mypdf,

%numsamples) generates numsamples iid points from the distribution mypdf.

%This function uses the symbolic math toolbox and assumes that mypdf is a

%function of x

%An alternate approach is to do it numerically, by quantizing the

%continuous pdf into tiny bins, and then sampling from an equivalent

%discrete distribution using mvnrnd.

x = sym(’x’);

eval([’mypdf = ’ mypdf ’;’]);

mycdf = int(mypdf, x) + int(mypdf, x, 0, Inf); %integrate

mycdfinv = finverse(mycdf); %find the inverse of the cdf

randsamples = zeros(numsamples, 1); % number of samples

for i = 1:numsamples

uniformrand = rand; %generate a uniform random number

randsamples(i) = subs(mycdfinv, uniformrand);

end

Solutions 3 3

%% This contains scripts for solving various parts of homework 3

%% Generate the datapoints

datapts = cell(0,0);

N = [10 100 1000];

for i = 1:length(N)

datapts{i} = randgen(’exp(-x)’, N(i));

end

%% Estimate the bandwidths

bandwidths = zeros(length(N), 1);

for i = 1:length(bandwidths)

meansubtract = datapts{i} - sum(datapts{i})/N(i);

stdevest = sqrt(meansubtract’*meansubtract/N(i));

bandwidths(i) = 1.06*stdevest*N(i)^(-1/5);

end

%% Kernel density estimator

xvals = -3:0.001:5;

ksdensities = zeros(length(xvals), 9);

bscales = [1/3, 1, 3];

for i = 1:3

for j = 1:3

for k = 1:N(j)

ksdensities(:,(i-1)*3 + j) = ksdensities(:,(i-1)*3 + j) +

normpdf(xvals, datapts{j}(k), bandwidths(j)*bscales(i))’;

end

ksdensities(:, (i-1)*3 + j) = ksdensities(:, (i-1)*3 + j)./N(j);

end

end

%% Plot the estimates

figure;

expdist = exp(-xvals);

posvals = (xvals < 0);

expdist(posvals) = 0;

for i = 1:9

subplot(3, 3, i);

hold on;

plot(xvals, expdist, ’r’);

plot(xvals, ksdensities(:,i), ’k’);

end

