UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering
ECE 544NA Pattern Recognition

Solutions 3

Fall 2013

Assigned: Thursday, September 12, 2013
Due: Tuesday, September 24, 2013

Reading: NNPR Chapters 2 \& 3

Problem 3.1

$p(X \mid Y=1)$ and $p(X \mid Y=-1)$ are uniform distributions over the unit disks $(2,0)$ and $(-2,0)$ respectively. Let n be the number of training examples, and suppose we have at least one of them - that is, $n \geq 1$. The 1 -nearest neighbor rule is always correct as long as there is at least one training example in each class. Given the geometry of the problem, any point within a particular disk is closer to a point in the disk than any point in the other disk (the distance between the two disks is 2). Hence, the only way $1-\mathrm{NN}$ makes a mistake is if all the training points are in the other class.

The 3-NN classifier is wrong in the case of $1-\mathrm{NN}$, but it is also wrong when there is only one point in the correct class. Hence, the probability of error for $3-\mathrm{NN}$ is greater and its risk is greater than that of $1-\mathrm{NN}$.

Problem 3.2

(a) The linear discriminant between classes C_{i} and C_{j} is given by $\left\{x:\left\|x-\mu_{i}\right\|=\left\|x-\mu_{j}\right\|\right\}$, which is equivalent to $\left\{x:\left(x-\mu_{i}\right)^{T}\left(x-\mu_{i}\right)=\left(x-\mu_{j}\right)^{T}\left(x-\mu_{j}\right)\right\}$. After some algebra, it is clear that this is equivalent to

$$
\left\{x:\left(\mu_{j}-\mu_{i}\right)^{T} x-\frac{1}{2}\left(\mu_{j}-\mu_{i}\right)^{T}\left(\mu_{j}+\mu_{i}\right)=0\right\}
$$

hence $w_{i j}=\mu_{j}-\mu_{i}$ and $b_{i j}=\frac{1}{2}\left(\mu_{j}+\mu_{i}\right)$
(b) This is identical to a linear discriminant with a Mahalanobis distance determined by Σ. Hence $w_{1 k}=$ $\Sigma^{-1}\left(\mu_{k}-\mu_{1}\right)$ and $b_{1 k}=\frac{1}{2}\left(\mu_{k}+\mu_{1}\right)$.

$$
P\left(C_{1} \mid x\right)=\left(1+\sum_{k=2}^{K} e^{-f_{1 k}(x)}\right)^{-1}
$$

and

$$
f_{1 k}(x)=-\ln \frac{\pi_{k}}{\pi_{1}}-w_{1 k}^{T}\left(x-b_{1 k}\right)
$$

Matlab Exercises

Problem 3.3

It is clear that as N increases, our estimator gets better - both visually and in the mean-squared sense. The bandwidth plays a crucial role in smoothing the density, and when it is too large (e.g. three times the optimal), there is an oversmoothing effect, and when it is too small, we can almost witness the individual

Figure 3.3-1: Density estimates for different scenarios

data spikes. Since the kernel we use is two-sided, the estimate naturally bleeds over to negative values of x when we have either oversmoothed or when we have too few examples; however, the discontinuity at $x=0$ is captured well for large N and an appropriate choice of h. Note that our choice of h depends on the sample standard deviation, which is not universally unbiased - given some additional information about the distribution, we can indeed select a better value for h.

```
function randsamples = randgen(mypdf, numsamples)
%Given a pdf mypdf and the number of samples, numsamples, randgen(mypdf,
%numsamples) generates numsamples iid points from the distribution mypdf.
%This function uses the symbolic math toolbox and assumes that mypdf is a
%function of x
%An alternate approach is to do it numerically, by quantizing the
%continuous pdf into tiny bins, and then sampling from an equivalent
%discrete distribution using mvnrnd.
x = sym('x');
eval(['mypdf = ' mypdf ';']);
mycdf = int(mypdf, x) + int(mypdf, x, 0, Inf); %integrate
mycdfinv = finverse(mycdf); %find the inverse of the cdf
randsamples = zeros(numsamples, 1); % number of samples
for i = 1:numsamples
    uniformrand = rand; %generate a uniform random number
    randsamples(i) = subs(mycdfinv, uniformrand);
```

```
%% This contains scripts for solving various parts of homework 3
%% Generate the datapoints
datapts = cell(0,0);
N = [10 100 1000];
for i = 1:length(N)
    datapts{i} = randgen('exp(-x)', N(i));
end
%% Estimate the bandwidths
bandwidths = zeros(length(N), 1);
for i = 1:length(bandwidths)
    meansubtract = datapts{i} - sum(datapts{i})/N(i);
    stdevest = sqrt(meansubtract'*meansubtract/N(i));
    bandwidths(i) = 1.06*stdevest*N(i)^(-1/5);
end
%% Kernel density estimator
xvals = -3:0.001:5;
ksdensities = zeros(length(xvals), 9);
bscales = [1/3, 1, 3];
for i = 1:3
    for j = 1:3
        for k = 1:N(j)
            ksdensities(:,(i-1)*3 + j) = ksdensities(:,(i-1)*3 + j) +
            normpdf(xvals, datapts{j}(k), bandwidths(j)*bscales(i))';
        end
        ksdensities(:, (i-1)*3 + j) = ksdensities(:, (i-1)*3 + j)./N(j);
    end
end
%% Plot the estimates
figure;
expdist = exp(-xvals);
posvals = (xvals < 0);
expdist(posvals) = 0;
for i = 1:9
    subplot(3, 3, i);
    hold on;
    plot(xvals, expdist, 'r');
    plot(xvals, ksdensities(:,i), 'k');
end
```

