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Problem 3.1

We discussed how k-nearest neighbors is a very powerful tool for classification, but (in its most general
form) is difficult to analyze. Consequently, there is a common misconception that the larger the k, the
better. k-nearest neighbor classification works as follows:

(a) Given some new point x, find k nearest neighbors {X(1), X(2), ..., X(k)} s.t. d(x,X(1)) ≤ d(x,X(2))... ≤
d(x,X(k)), where d(x, y) denotes distance between two points x and y. The distances are computed
over all points in the training set: {(X1, Y1), (X2, Y2), ..., (XN , YN )}.

(b) fknn(x) = Yknn = Majority{Y(1), Y(2), ..., Y(k)}, where Majority selects the label Y that occurs most
frequently.

In words, we first first find the k closest points to x within the training set, and from their corresponding
labels, pick the one that occurs the most (majority). Ties are broken arbitrarily. In the case of 1-nearest
neighbor classification, we simply take the label of the closest point in the training set.

Let us take the simple example of binary classification in which we know that p(X|Y = 1) and p(X|Y =
−1) are uniform distributions over the unit disks centered at (2,0) and (-2,0), respectively. Prove that in
this specific scenario, the risk (assume 0-1 loss) of the 1-nearest neighbor classifier is lower than the risk of
the 3-nearest neighbor classifier.

Problem 3.2

A Voronoi tessellation is a division of the space RD into K classes, C1, C2, ..., CK such that

Ck = {x : ‖x− µk‖ ≤ ‖x− µi‖ ∀ i 6= k}

Notice that by this definition, the boundary Bij is a subset of both Ci and Cj ; the decision is arbitrary on
the boundary.

(a) Discrimination between classes µi and µj for any i and j, can be performed by evaluating the sign of
the linear discriminant yij(x) = wTij(x− bij). Find the vectors wij and bij in terms of µi and µj .

(b) Suppose that each class is Gaussian with a covariance matrix Σ common to all classes, and with prior
probabilities π1, π2, ..., πK . The posterior probability p(C1|x) can be written as an extended sigmoid
function,

p(C1|x) = (1 + e−f12(x) + e−f13(x) + ...+ e−f1K(x))−1

Write f1k(x) without using µ1 or µk in your answer. You may include w1k, b1k, Σ, and lnπk

π1
in your

answer.
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Matlab Exercises

Problem 3.3

The smoothing parameter (aka bandwidth), h, plays an important role in kernel density estimation. A
good criterion for selecting h is one that minimizes the mean-squared error. For a univariate Gaussian kernel,

h∗ ≈ 1.06σ̂N
−1
5 is the optimal choice, where σ̂ is the estimate of the standard deviation of the samples and

N is the number of samples.

(a) Write a function, randgen(f,N) that generates N i.i.d samples from a given probability density func-
tion f . You may find the built-in matlab function rand to be useful.

(b) For N = {10, 100, 1000}, generate N independent samples from an exponential distribution with λ = 1
(f(x) = e−x[x ≥ 0], where [.] is the indicator function).

(c) Compute the sample standard deviation, σ̂, without making any prior assumptions on the distribution
(i.e., DO NOT assume that the data are drawn from an exponential distribution). For each N , estimate
the optimal bandwidth, h∗(N).

(d) Estimate the pdf using kernel density estimation with a Gaussian kernel for each N , under three
different bandwidth settings: {h∗(N)/3, h∗(N), 3 ∗ h∗(N)}.

(e) Summarize your results by plotting the pdf estimates. You need to have 9 plots overall (3 values of N
x 3 values of h). Overlay each plot with the true density, f(x) for xε[−1, 4] (to save space, consider
using the matlab function subplot(3,3,.)). Comment on the influence of h, N , and the kernel itself on
the pdf estimates.


