
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition

Homework 2
Fall 2013

Assigned: Thursday, September 5, 2013 Due: Thursday, September 12, 2013

Reading: NNPR Chapter 2, or PRML Chapters 2 and 9

Problem 2.1

A diagonal-covariance Generalized Gaussian pdf has a form similar to a Gaussian, but decays as the
Lp-norm of the distance from the mean, not the L2-norm. This can be written as

p(~x) ∝ 1∏D
d=1 λ(d)

exp

(
−

D∑
d=1

(
x(d) − µ(d)

λ(d)

)p
)

(a) Suppose you are given N vector observations, ~x ∈ <D. Find the maximum likelihood estimators of the

parameters ~µ and ~λ.

(b) Suppose that you have prior information about the centroid vector ~µ: suppose you are told that it’s

most a priori probable value is ~µ ≈ ~ν, with confidence 1/α(d) in the dth dimension, thus

p(~µ) ∝ 1∏D
d=1 α(d)

exp

(
−

D∑
d=1

(
µ(d) − ν(d)

α(d)

)p
)

In addition to this prior information, you are also given N observations, X = {~x1, . . . , ~xN}. Find the
MAP estimator of ~µ.

Matlab Exercises

Problem 2.2

Humans naturally group similar colors together; for example, we might describe a particular outfit as
“a maroon sweater with navy blue shorts,” ignoring the many subtle variations of color tone present in the
sweater. Machines are not so good at clustering colors.

One of the problems is that machines are more sensitive to small variations in luminance than humans are;
humans are relatively more sensitive to chrominance changes, and less sensitive to luminance. We can make
the machine completely insensitive to luminance by normalizing out the luminance, thus if ~x~n = [r~n, g~n, b~n]T

is the RGB color vector at pixel ~n = [n1, n2] of an image, we can create a pure chrominance vector as, for
example,

~y~n =

[
yr[~n]
yb[~n]

]
=

1

r~n + g~n + b~n

[
r~n
b~n

]
Find an image you like, and which has two or three obviously dominant colors. Create an electronic

document that you will e-mail to me as your solution to this problem, so that you don’t have to waste money
on color printouts. Paste a copy of your image into the electronic document.



Homework 2 2

Calculate a chrominance vector for each pixel in the image. Plot a scatter plot of the chrominance vectors,
~y~n (e.g., plot(y(1,:),y(2,:),’x’);). Include this scatter plot in your solution set.

Write two matlab functions called estep and mstep that compute, respectively, the E-step and M-step
for training a Gaussian mixture model. Specifically, the function estep should accept model parameters and
data, and should compute γ~n(j) = p(j|~y~n, θ) for each Gaussian component number j and for each sample
vector ~y~n. The function mstep should take the values of γ~n(j) and the data vectors, and should return new
estimates of the model parameters.

Use your code to estimate a three-component, full-covariance Gaussian mixture model of the chrominance
vectors in your image. Start with centroid vectors ~µj that are reasonable based on your histogram. Start
with relatively small covariance matrices, perhaps Σj = 0.01I. Iterate estep and mstep several times, until
the values of the parameters stop changing.

Plot one-sigma ellipses for the three components of your GMM, in a vector space with the same axes
as your scatter plot. If [Vj,Dj] are the eigenvector and eigenvalue matrices of Σj , and muj is its centroid
vector, then its one-sigma ellipse can be plotted as

phi = [0:0.01:(2*pi)];

ellipse = muj+sqrt(Dj(1,1))*Vj(:,1)*cos(phi)+sqrt(Dj(2,2))*Vj(:,2)*sin(phi);

plot(ellipse(1,:),ellipse(2,:),’-’);

hold on;

where the last command holds the plot, so that you can put all three ellipses onto the same plot. Hand in
this plot. You should find that the ellipses are close to the densest regions in your scatter plot.

Create a figure with a 3 × 5 array of sub-plots (subplot(3,5,j); for 1 ≤ j ≤ 15). In the first column
of sub-plots, use image or imagesc to show a solid-color image containing the centroid color from your first
Gaussian component. You can do this by converting the chrominance vector into an RGB vector using some
default luminance (perhaps x=[muj(1);1-sum(muj);muj(2)]*255), then creating a 100 × 100 × 3 image
with every pixel set equal to the default color (perhaps A=permute(repmat(x,[1 100 100]),[3 2 1]);,
then showing the image using image or imagesc. In the first column of your figure, each row should contain
a solid-color image showing the centroid color from one of the three Gaussian components.

The second column should contain solid-color images showing the color that is one standard deviation

away from the centroid along the first eigenvector of the covariance, thus the jth row contains the color
µj + Vj(:, 1) ∗

√
Dj(1, 1). The third column similarly contains µj − Vj(:, 1) ∗

√
Dj(1, 1), the fourth column

contains µj + Vj(:, 2) ∗
√
Dj(2, 2), and the fifth column contains µj − Vj(:, 2) ∗

√
Dj(2, 2).

Now train another GMM using the same data, but with a different starting point (for example, try
initializing the centroids randomly according to a uniform distribution). Create an ellipse-plot showing the
one-sigma ellipses that result. How different is the result? Does the result still capture the color distribution
of the original image?


