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ECE 544NA Pattern Recognition
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Exam 2

Friday, December 14, 2007

• This is a CLOSED BOOK exam, but you may use TWO PAGES, BOTH SIDES of
hand-written notes

• Calculators are permitted, but will probably not be useful. The answer “ln(2)” is prefer-
able to the answer “0.693147.”

• You must SHOW YOUR WORK to get full credit.
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Problem 1 (25 points)

Consider the problem of training a multi-class perceptron. Tokens ~x1, . . . , ~xn are drawn from
classes z1, . . . , zn, where each class label is an integer such that 1 ≤ zi ≤ J . The perceptron
classification function may then be defined in terms of discriminant vectors A = [~a1, . . . ,~aJ ] to
be

h(~x) = arg max
1≤j≤J

~aTj ~x (1)

The multi-class perceptron error metric may be defined as

J(A) =
n∑

i=1

max
1≤j≤J

(
~aTj ~xi − ~aTzi~x

)
. (2)

Consider the following sub-problems:

(a) Let Rj = {~x : h(~x) = j}. Prove that Rj is a convex region with piece-wise linear bound-
aries.

(b) Prove that the error metric J(A) is non-negative.
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(c) Find the gradient of J(A) with respect to ~a4, the discriminant vector for the fourth class.

(d) Based on your answer to part (c), devise an on-line training algorithm for the multi-class
perceptron. How many of the ~aj vectors are updated in response to a correctly classified
training token? How many of the ~aj vectors are updated in response to an incorrectly
classified token?
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Problem 2 (10 points)

Consider the neural network shown above. The output nodes are linear, but the hidden
nodes use a cosine nonlinearity:

zk =
c∑

j=1

vkjyj (3)

yj = cos(
d∑

i=1

ujixi) (4)

The error metric is sum-squared error, i.e.,

J(U, V ) =
1

2

N∑
n=1

b∑
k=1

|zkn − tkn|2 (5)

for targets ~tn = [t1n, . . . , tbn]T corresponding to the training vectors ~xn = [x1n, . . . , xdn]T . Write
∂J/∂upq explicitly in terms of variables shown in the figure.
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Problem 3 (15 points)

Suppose that J(~w), the error metric of a neural network, has a local minimum at ~w = 0.
Within the attractor basin for this local minimum, suppose that

J(~w) ≈ ~wTH ~w + J∗ (6)

Suppose that you are using a line search algorithm. Beginning with an initial weight vector ~w1,
the following steps are iterated for t = 1, . . .:

• Choose a search direction ~vt

• Choose α to minimize J(~wt+1), where ~wt+1 = ~wt + α~vt.

Suppose that, by wonderful good luck, you choose an initial search direction ~v1 that happens
to be the first eigenvector of the Hessian matrix.

(a) Find ~w2.

(b) Assume that all future search directions are chosen to be negative gradients of J , i.e.,
~vt = −∇J(~wt) for t ≥ 2. Prove that ~vT1 H ~wt ≈ 0 for all t ≥ 2.
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Problem 4 (10 points)

Suppose that J(~w), the error metric of a neural network, has a local minimum at ~w = 0.
Within the attractor basin for this local minimum, suppose that

J(~w) ≈ ~wTH ~w + J∗ (7)

Suppose that the weight vector can be divided into two parts, i.e., ~w = [w1, ~w
T
2 ]T , where ~w2

contains all of the weights except w1, i.e., ~w2 = [w2, . . . , w(bc+dc)]
T . Notice that under this

circumstance, J(~w) can be written as

J(~w) ≈ w2
1h11 + 2w1

~hT12 ~w2 + ~wT
2H22 ~w2 + J∗, (8)

where ~hT12 = [h12, . . . , h1K ], and H22 is the remainder of the Hessian.
Suppose that w1 is to be estimated using deterministic simulated annealing: you are going

to fix all of the coefficients in vector ~w2, and compute ŵ1, the new value of w1, according to

ŵ1 = E [w1|~w2] (9)

using the Boltzmann probability density p(w1|~w2) ∝ e−J(~w)/T .
Solve for ŵ1. Your answer should be a function of the temperature T , the fixed weights ~w2,

and the elements of the Hessian.
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Problem 5 (20 points)

Consider two decision trees, T1 and T2. Tree T1 has leaf nodes Nk, 1 ≤ k ≤ K. Tree T2
has leaf nodes Nm, 1 ≤ m ≤ M . Your colleague George Washington has proposed a function
d(T1, T2) that he believes can be used to measure the distance between the two trees:

d(T1, T2) =
K∑
k=1

M∑
m=1

P (Nk, Nm)

[
arg max

1≤j≤J
P (ωj |Nk) 6= arg max

1≤j≤J
P (ωj |Nm)

]
(10)

where:

• P (Nk, Nm) is the probability that a vector ~x drawn from the evidence distribution p(~x)
falls into node Nk of tree T1, and also falls into node Nm of tree T2.

• [p] is the unit indicator function for proposition p, defined by

[p] =

{
1 p true
0 p false

(11)

(a) Is d(T1, T2) non-negative?

(b) Is d(T1, T2) reflexive?
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(c) Is d(T1, T2) symmetric?

(d) Does d(T1, T2) satisfy the triangle inequality? Hint: write d(T1, T2) as a probability.
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Problem 6 (20 points)

The maximum-Gaussian density is similar to the mixture-Gaussian density, except that
instead of adding weighted Gaussians, we compute the maximum:

p̂(~xi) = max
1≤j≤J

cjφj(~xi), (12)

where φj(~xi) is the Gaussian PDF with mean vector ~µj and covariance matrix Σj , and cj are
chosen so that

∫
p̂(~x)d~x = 1.

In both parts of this problem, please assume that the weights are constrained to be uniform
(cj = c) and that the covariance matrices are constrained to be identity (Σj = I), so that the
only free parameters are θ = {J, ~µ1, . . . , ~µJ}.

Please also assume that the training database contains n unlabeled vectors, D = {~x1, . . . , ~xn}.

(a) The evidence estimate p̂(~x) may be trained using maximum likelihood, i.e., in order to
maximize

L(~µ1, . . . , ~µJ) =
n∑

i=1

ln p̂(~xi) (13)

Prove that the K-means clustering algorithm finds a local maximum of L.
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(b) What is the Kolmogorov description length K(D, p̂)?

• Assume that the mean vectors have d elements, ~µj = [µj1, . . . , µjd]T , and that B bits
are required to quantize each element.

• Assume that ~xi may be quantized using −B log2 p̂(~xi) bits.


