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e This is a CLOSED BOOK exam, but you may use TWO PAGES, BOTH SIDES of

hand-written notes

b

e Calculators are permitted, but will probably not be useful. The answer “In(2)” is prefer-

able to the answer “0.693147.”
e You must SHOW YOUR WORK to get full credit.
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Problem 1 (25 points)

Consider the problem of training a multi-class perceptron. Tokens 71, ..., Z, are drawn from
classes z1,..., 2z, where each class label is an integer such that 1 < z; < J. The perceptron
classification function may then be defined in terms of discriminant vectors A = [dy,...,d ] to
be

h(Z) = arg 1Iilja<XJ d’?f (1)

The multi-class perceptron error metric may be defined as

n

J(A) =3 max, (af 7 - al7). (2)

Consider the following sub-problems:

(a) Let R; ={Z: h(Z) = j}. Prove that R; is a convex region with piece-wise linear bound-
aries.

(b) Prove that the error metric J(A) is non-negative.
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(c) Find the gradient of J(A) with respect to d4, the discriminant vector for the fourth class.

(d) Based on your answer to part (c), devise an on-line training algorithm for the multi-class
perceptron. How many of the @; vectors are updated in response to a correctly classified
training token? How many of the d; vectors are updated in response to an incorrectly
classified token?
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Problem 2 (10 points)

Consider the neural network shown above. The output nodes are linear, but the hidden
nodes use a cosine nonlinearity:

C
%= ) Uy (3)
j=1

d
yj = COS(Z: UjiZ;) (4)

The error metric is sum-squared error, i.e.,

1 N b
JUV) =5 S lzkn — tral® (5)
n=1 k=1
for targets &, = [tin, ..., tp]” corresponding to the training vectors &, = [T1n, ..., Zan| . Write

0J/0uyq explicitly in terms of variables shown in the figure.
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Problem 3 (15 points)

Suppose that J(w), the error metric of a neural network, has a local minimum at @ = 0.
Within the attractor basin for this local minimum, suppose that

J(0) ~ wT Hw + J* (6)

Suppose that you are using a line search algorithm. Beginning with an initial weight vector @,
the following steps are iterated for t =1,...:

e Choose a search direction ¥;
e Choose o to minimize J (1), where W1 = Wy + ;.

Suppose that, by wonderful good luck, you choose an initial search direction ¢ that happens
to be the first eigenvector of the Hessian matrix.

(a) Find U72 .

(b) Assume that all future search directions are chosen to be negative gradients of J, i.e.,
¥y = —V.J(;) for t > 2. Prove that o7 Hwy; ~ 0 for all ¢ > 2.



NAME: Exam 2 Page 6

Problem 4 (10 points)

Suppose that J(w), the error metric of a neural network, has a local minimum at @ = 0.
Within the attractor basin for this local minimum, suppose that

J(@) ~ Wl Hw + J* (7)
Suppose that the weight vector can be divided into two parts, i.e., @ = [w1, w3 |7, where i

contains all of the weights except wi, i.e., Wy = [wy,... ,w(bCerc)]T. Notice that under this
circumstance, J() can be written as

J(Qﬁ) ~ w%hn + 2’LU1E"1FQIUQ + ngQQwQ + J*, (8)
where l_ilTQ = [h12,...,hik], and Ha is the remainder of the Hessian.

Suppose that w; is to be estimated using deterministic simulated annealing: you are going
to fix all of the coefficients in vector ws, and compute w;, the new value of wy, according to

ﬁ)l =F [w1]u72] (9)
using the Boltzmann probability density p(w; |ws) oc e~/ @)/,
Solve for w;. Your answer should be a function of the temperature T', the fixed weights s,
and the elements of the Hessian.
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Problem 5 (20 points)

Consider two decision trees, 71 and Ts. Tree 17 has leaf nodes N, 1 < k < K. Tree 15
has leaf nodes N,,, 1 < m < M. Your colleague George Washington has proposed a function
d(T1,T5) that he believes can be used to measure the distance between the two trees:

K M
d(Th,Ty) = kz::lmz::l P(Ng, Np,) [arg 1I£Ja§XJP(wj’Nk) # arg élgangP(wj‘Nm) (10)
where:

e P(Ng, N,,) is the probability that a vector & drawn from the evidence distribution p(Z)
falls into node NN, of tree T, and also falls into node IV, of tree T5.

e [p] is the unit indicator function for proposition p, defined by

) 1 ptrue
[Pl = { 0 p false (11)

(a) Is d(T1,T>) non-negative?

(b) Is d(Ty,T») reflexive?
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(c) Is d(T1,T>) symmetric?

(d) Does d(Ty,Ts) satisfy the triangle inequality? Hint: write d(71,T%) as a probability.
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Problem 6 (20 points)

The maximum-Gaussian density is similar to the mixture-Gaussian density, except that
instead of adding weighted Gaussians, we compute the maximum:

(7;) = max cj¢;(Ti), (12)

3>

where ¢;(%;) is the Gaussian PDF with mean vector [i; and covariance matrix ¥;, and ¢; are
chosen so that [ p(Z)dZ = 1.

In both parts of this problem, please assume that the weights are constrained to be uniform
(¢j = ¢) and that the covariance matrices are constrained to be identity (3; = I), so that the
only free parameters are 6 = {J, i1, ..., [is}.

Please also assume that the training database contains n unlabeled vectors, D = {Z1, ..., Z,}.

(a) The evidence estimate p(Z) may be trained using maximum likelihood, i.e., in order to
maximize

L, ..., flr) = znzlﬂﬁ(fi) (13)
=1

Prove that the K-means clustering algorithm finds a local maximum of L.
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(b) What is the Kolmogorov description length (D, p)?

e Assume that the mean vectors have d elements, [i; = i1, .. ., ,ujd]T, and that B bits
are required to quantize each element.

e Assume that Z; may be quantized using — B log, p(#;) bits.



