UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 544NA Pattern Recognition Fall 2007

Exam 1

Monday, October 14, 2007

- This is a CLOSED BOOK exam, but you may use ONE PAGE, BOTH SIDES of hand-written notes
- Calculators are permitted
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
Total	

Name: \qquad

Problem 1 (40 points)

The planet xkblprq and its core rotate asynchronously, in a complex multiperiodic pattern, with the result that some mornings, the sun doesn't rise. You have the following model: on the i th day, the sun rises $\left(x_{i}=1\right)$ with probability θ, or fails to rise $\left(x_{i}=0\right)$ with probability $1-\theta$. In other words,

$$
p_{x}\left(x_{i}\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

(a) What is $\hat{\theta}_{M L}$, the maximum likelihood estimate of θ given i.i.d. training data $\mathcal{D}=$ $\left\{x_{1}, \ldots, x_{n}\right\}$?
(b) Prove that $s=\sum_{i=1}^{n} x_{i}$ is a sufficient statistic for θ.
(c) You decide to regularize your estimate with a Dirichlet prior:

$$
p(\theta)= \begin{cases}\frac{(m+1)!}{k!(m-k)!} \theta^{k}(1-\theta)^{(m-k)} & 0 \leq \theta \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where "!" denotes factorial. Find $\hat{\theta}_{M A P}$.
(d) Find a function which is proportional to the Bayesian estimate $\hat{p}\left(x_{0} \mid \mathcal{D}\right)$, using the Dirichlet prior. In order to evaluate the integral, you may find it useful to note that the Dirichlet prior is a correctly normalized probability density.

Problem 2 (20 points)

You have landed on a planet on which it is possible, with prior probability P_{1}, that the sun rises every day, but it is also possible, with prior probability $1-P_{1}$, that the sun only rises 50% of the time.
(a) The sun has risen for the past three days. Your commander asks you to determine, with minimum probability of error, whether or not this is a planet on which the sun always rises. For what values of P_{1} would you answer "yes"?
(b) Your spaceship is expensive: each day that you sit on this planet costs $\$ 10,000$. Your goal is to determine whether or not the sun always rises, and if so, to build a $\$ 10,000,000$ solar power plant. If the sun ever fails to rise on any given day, chemicals in the solar cells will destroy the power plant, wasting $\$ 10,000,000$. As a function of P_{1}, how many consecutive sunrises will you watch before telling your commander that it's OK to build the plant?
\qquad

Problem 3 (20 points)

You are a microcontroller with a sensor that measures the light level, x_{i}, in arbitrary units. Your job is to determine the weather: is today $\omega_{1}=$ "sunny", or $\omega_{2}=$ "cloudy?" You have been programmed to compute Parzen window estimates of $p\left(x \mid \omega_{1}\right)$ and $p\left(x \mid \omega_{2}\right)$ using the rectangular window:

$$
\begin{aligned}
& \hat{p}(x)=\frac{1}{n V} \sum_{i=1}^{n} \phi\left(\frac{x-x_{i}}{h}\right) \\
& \phi\left(\frac{x}{h}\right)= \begin{cases}1 & |x|<\frac{h}{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

You have five labeled training days. Three days were sunny, with light levels of $x_{1}=4, x_{2}=1$, and $x_{3}=5$ units, respectively. Two days were cloudy, with light levels of $x_{4}=3$ and $x_{5}=2$ units.
(a) Plot the Parzen window estimated likelihood $\hat{p}\left(x \mid \omega_{1}\right)$ as a function of x, using $h=1$.
(b) Plot the Parzen window estimated likelihood $\hat{p}\left(x \mid \omega_{2}\right)$ as a function of x, using $h=1$.
(c) Plot the posterior probability, $\hat{P}\left(\omega_{1} \mid x\right)$, implied by your choices in parts (a) and (b), for all values of x for which it is defined, using $h=1$. Assume maximum likelihood estimates of the priors $\hat{P}\left(\omega_{1}\right)$ and $\hat{P}\left(\omega_{2}\right)$.
(d) In this part, you will choose a new value of h in order to control the bias of the estimator. Suppose that you don't know anything about the true likelihood, $p\left(x \mid \omega_{1}\right)$, except that it is everywhere continuous with bounded slope:

$$
\left|\frac{\partial p\left(x \mid \omega_{1}\right)}{\partial x}\right|<a
$$

As in the previous sections, assume that

$$
\phi\left(\frac{x}{h}\right)= \begin{cases}1 & |x|<\frac{h}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Choose h, as a function of a, so that

$$
\left|p\left(x \mid \omega_{1}\right)-E_{1}\left[\hat{p}\left(x \mid \omega_{1}\right)\right]\right|<0.01
$$

where

$$
E_{1}[f(x)] \equiv \int f(x) p\left(x \mid \omega_{1}\right) d x
$$

Problem 4 (20 points)

The dissimilarity between two d-dimensional Gaussian distributions $p\left(x \mid \omega_{1}\right)$ and $p\left(x \mid \omega_{2}\right)$, with means μ_{1} and μ_{2} and with covariance matrices Σ_{1} and Σ_{2} respectively, may be measured as

$$
d\left(\omega_{1}, \omega_{2}\right)=\ln \left|\frac{1}{d^{2}} \operatorname{trace}\left(\Sigma_{1}^{-1} \Sigma_{2}\right) E_{1}\left[\left(x-\mu_{1}\right)^{T} \Sigma_{2}^{-1}\left(x-\mu_{1}\right)\right]\right|
$$

where

$$
E_{1}[f(x)] \equiv \int f(x) p\left(x \mid \omega_{1}\right) d x
$$

(a) Is $d\left(\omega_{1}, \omega_{2}\right)$ symmetric? (note: $\operatorname{trace}(A B)=\operatorname{trace}(B A)$ for appropriately-dimensioned matrices.)
(b) Is $d\left(\omega_{1}, \omega_{2}\right)$ reflexive?

