• This is a CLOSED BOOK exam. You may use two pages, both sides, of notes.

• There are a total of 100 points in the exam (15-20 points per problem). Plan your work accordingly.

• You must SHOW YOUR WORK to get full credit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Name: ________________________________
Problem 1 (15 points)

Measurements, \(x \), are drawn from the pdf

\[
p(x) = \Pr \{C = 1\} p_1(x) + \Pr \{C = 2\} p_2(x)
\]

\[
p_1(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}
\]

\[
p_2(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-1)^2}
\]

Suppose \(\Pr \{C = 1\} = \frac{1}{3} \). Specify the decision rule \(y(x) \) that minimizes the probability \(\Pr \{y(x) \neq C\} \).

Solution

\[
y(x) = \begin{cases}
1 & x \leq \frac{1}{2} - \ln 2 \\
2 & \text{otherwise}
\end{cases}
\]
Problem 2 (15 points)

Suppose you have \(N \) samples \(x^{(n)} \), \(1 \leq n \leq N \), each distributed i.i.d. as

\[
p(x^{(n)}) = \begin{cases}
\lambda e^{-\lambda x^{(n)}} & x^{(n)} \geq 0 \\
0 & x^{(n)} < 0
\end{cases}
\]

The parameter \(\lambda \) is unknown; in fact, it is itself a random variable, and was selected, prior to creation of this dataset, according to the prior distribution

\[
p(\lambda) = \begin{cases}
\tau e^{-\tau \lambda} & \lambda \geq 0 \\
0 & \lambda < 0
\end{cases}
\]

Find the MAP estimate of \(\lambda \) in terms of \(N \), \(\tau \), and the samples \(x^{(n)} \).

Solution

\[
\lambda_{MAP} = \frac{N}{\tau + \sum_{n=1}^{N} x^{(n)}}
\]
Problem 3 (20 points)

A two-dimensional real vector \(\mathbf{x} = [x_1, x_2]^T \) is selected from one of two uniform pdfs, either \(p_1(\mathbf{x}) \) or \(p_{-1}(\mathbf{x}) \), given as

\[
p_1(\mathbf{x}) = \begin{cases} \frac{1}{5} & -1 \leq x_2 \leq 2, \quad -\frac{3}{2} \leq x_1 \leq \frac{3}{2} \\ 0 & \text{otherwise} \end{cases}
\]

\[
p_{-1}(\mathbf{x}) = \begin{cases} \frac{1}{5} & -2 \leq x_2 \leq 1, \quad -\frac{3}{2} \leq x_1 \leq \frac{3}{2} \\ 0 & \text{otherwise} \end{cases}
\]

A classifier is trained with the decision rule \(y(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x}) \). The weight vector is trained using stochastic gradient descent, with a perceptron training criterion. Let \(\mathbf{w}(n) \) be the weight vector after presentation of \(\mathbf{x}^{(n)} \) and \(t^{(n)} \), thus

\[
\mathbf{w}(n) = \mathbf{w}(n-1) - \nabla \mathbf{w} \max \left(0, -\langle \mathbf{w}(n-1) \rangle t^{(n)} \mathbf{x}^{(n)} \right)
\]

Suppose that after \(N-1 \) training iterations, for some very large \(N \), the weight vector is given by

\[
\mathbf{w}(N-1) = \begin{bmatrix} 0 \\ 5000 \end{bmatrix}
\]

Find the expected value after the next iteration, \(E \left[\mathbf{w}(N) \left| \mathbf{w}(N-1) = \begin{bmatrix} 0 \\ 5000 \end{bmatrix} \right. \right] \). Be sure to consider the possibility that \(\mathbf{x}^{(N)} \) might be correctly classified.

Solution

\[
E \left[\mathbf{w}(N) \left| \mathbf{w}(N-1) = \begin{bmatrix} 0 \\ 5000 \end{bmatrix} \right. \right] = \Pr \left(t^{(N)} = 1 \right) \Pr \left(\text{error} \left| t^{(N)} = 1 \right. \right) E \left[\mathbf{w}(n) \left| \mathbf{w}(n-1), t^{(N)} = 1, \text{error} \right. \right] + \Pr \left(t^{(N)} = 1 \right) \Pr \left(\text{no error} \left| t^{(N)} = 1 \right. \right) E \left[\mathbf{w}(n) \left| \mathbf{w}(n-1), t^{(N)} = 1, \text{no error} \right. \right] + \Pr \left(t^{(N)} = -1 \right) \Pr \left(\text{error} \left| t^{(N)} = -1 \right. \right) E \left[\mathbf{w}(n) \left| \mathbf{w}(n-1), t^{(N)} = -1, \text{error} \right. \right] + \Pr \left(t^{(N)} = -1 \right) \Pr \left(\text{no error} \left| t^{(N)} = -1 \right. \right) E \left[\mathbf{w}(n) \left| \mathbf{w}(n-1), t^{(N)} = -1, \text{no error} \right. \right]
\]

\[
= \Pr \left(t^{(N)} = 1 \right) \left(\mathbf{w}(N-1) + \frac{1}{3} E \left[\mathbf{x} \left| t^{(N)} = 1, x_2 < 0 \right. \right] \right)
\]

\[
+ \Pr \left(t^{(N)} = -1 \right) \left(\mathbf{w}(N-1) - \frac{1}{3} E \left[\mathbf{x} \left| t^{(N)} = -1, x_2 > 0 \right. \right] \right)
\]

\[
= \Pr \left(t^{(N)} = 1 \right) \left(\mathbf{w}(N-1) + \frac{1}{3} \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} \right)
\]

\[
+ \Pr \left(t^{(N)} = -1 \right) \left(\mathbf{w}(N-1) - \frac{1}{3} \begin{bmatrix} 0 \\ -0.5 \end{bmatrix} \right)
\]

\[
= \begin{bmatrix} 0 \\ 4999.5 \end{bmatrix}
\]
Problem 4 (20 points)

A “spiral network” is a brand new category of neural network, invented just for this exam. It is a network with a scalar input variable \(x^{(n)} \), a scalar target variable \(t^{(n)} \), and with the following architecture:

\[
\begin{align*}
z_j^{(n)} &= \begin{cases}
 x_j^{(n)} & j = 1 \\
 g\left(a_j^{(n)}\right) & 2 \leq j \leq M \\
 \sum_{i=1}^{j-1} w_{ji} z_i^{(n)} & j = M
\end{cases} \\
a_j^{(n)} &= \sum_{i=1}^{j-1} w_{ji} z_i^{(n)}
\end{align*}
\]

Suppose that the network is trained to minimize the sum of the per-token squared errors
\[
E^{(n)} = \frac{1}{2} (z_M^{(n)} - t^{(n)})^2.
\]
The error gradient can be written as

\[
\frac{\partial E^{(n)}}{\partial w_{ji}} = \delta_j^{(n)} z_i^{(n)}
\]

Find a formula that can be used to compute \(\delta_j^{(n)} \), for all \(2 \leq j \leq M \), in terms of \(t^{(n)} \), \(z_j^{(n)} = g(a_j^{(n)}) \), and/or \(g'(a_j^{(n)}) = \frac{\partial g}{\partial a_j^{(n)}} \).

Solution

\[
\delta_j^{(n)} = \begin{cases}
 (z_M^{(n)} - t^{(n)}) g'(a_M^{(n)}) & j = M \\
 \sum_{k=j+1}^{M} \delta_k^{(n)} w_{kj} g'(a_j^{(n)}) & \text{ elsewhere}
\end{cases}
\]
Problem 5 (15 points)

Exact computation of the Hessian is usually impractical, but there is one case in which it is computationally efficient. Consider a one-layer, one-output network with input $\mathbf{x}^{(n)} \in \mathbb{R}^D$ and scalar output $y^{(n)}$ given by

$$y^{(n)} = g\left(a^{(n)}\right), \quad a^{(n)} = \sum_{i=1}^{D} w_i x_i^{(n)}$$

The $(i,j)^{th}$ element of the Hessian matrix is defined by

$$H(i,j) = \frac{\partial^2 E}{\partial w_i \partial w_j}, \quad E = \frac{1}{2} \sum_{n=1}^{N} \left(y^{(n)} - t^{(n)}\right)^2$$

Find $H(i,j)$ exactly in terms of $w_i, w_j, y^{(n)} = g(a^{(n)}), g'(a^{(n)}) = \frac{\partial g}{\partial a^{(n)}},$ and $g''(a^{(n)}) = \frac{\partial^2 g}{(\partial a^{(n)})^2}$.

Solution

$$H(i,j) = \sum_{n=1}^{N} x_i^{(n)} x_j^{(n)} \left((g'(a^{(n)}))^2 + (y^{(n)} - t^{(n)}) g''(a^{(n)}) \right)$$
Problem 6 (15 points)

Consider an RBM with a scalar real-valued input, \(v \in \mathbb{R} \), and a binary hidden node, \(h \in \{0, 1\} \). Consider the model

\[
p(h, v) = \frac{1}{Z} e^{-E(h,v)}, \quad E(h, v) = \frac{1}{2} (v - (wh + b))^2 - hc
\]

for scalars \(w, b, \) and \(c \) and for denominator

\[
Z = \sum_{h=0}^{1} \int_{-\infty}^{\infty} e^{-E(h,v)} dv
\]

Assume that the values of \(h \) and \(v \) are given; find \(\frac{\partial \ln p(h,v)}{\partial c} \).

Solution

\[
\frac{\partial \ln p(h,v)}{\partial c} = h - \frac{1}{Z} \int_{-\infty}^{\infty} e^{-E(1,v)} dv = h - \frac{1}{1 + e^{-c}}
\]