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Hypothesis Testing and Information Theory 
RICHARD E. BLAHUT, MEMBER, IEEE 

Abstract-The testing of binary hypotheses is developed from an  
information-theoretic point of view, and  the asymptotic per formance of 
opt imum hypothesis testers is developed in exact analogy to the asymp- 
totic per formance of opt imum channel  codes.  The  discrimination, 
introduced by Kullback, is developed in a  role analogous to that of mutual 
information iu channel  coding theory. Based on  the discrimination, an  
error-exponent function e(r) is defined. This function is found to descr ibe 
the behavior of opt imum hypothesis testers asymptotically with block 
length. Next, mutual information is introduced as a  minimum of a  set of 
discriminations. This approach has  later coding significance. The  channel  
reliability-rate function E(R) is def ined in terms of discrimination, and  a  
number  of its mathematical propert ies developed.  Sphere-packing-l ike 
bounds  are developed in a  relatively straightforward and  intuitive manner  
by  relating e(r) and  E(R). This ties together the aforement ioned develop- 
ments and  gives a  lower bound  in terms of a  hypothesis testing model. The  
result is valid for discrete or cont inuous probability distributions. The  dis- 
crimination function is also used  to define a  source code reliability-rate 
function. This function allows a  simpler proof of the source coding 
theorem and  also bounds  the code performance as a  function of block 
length, thereby providing the source coding analog of E(R). 

I. INTRODUCTION 

N OPTIMAL channel block code of rate R and A block length n has a probability of error, which is 
asymptotically exponential as a function of IZ, provided that 
R is less than the channel capacity C. This was established 
by Feinstein [l]. Fano [2] explicitly found an exponentially 
decreasing function as an upper bound to this probability 
of error. The exponential decay coefficient E(R) is nonzero 
only for rates below the channel capacity. By means of this 
latter observation, Fano provides a satisfying proof of the 
channel coding theorem of Shannon [3]. Fano further 
showed that E(R) also provides a lower bound to code 
performance for high rates, and hence describes the 
performance of optimum high-rate codes. 

The development of these results later was considerably 
refined and simplified by Gallager [4] and by Shannon 
et al. [5]. 

The function E(R) usually appears during the proof of 
the coding theorem as the outcome of a series of manipula- 
tions, and so attains little intuitive appeal. One purpose of 
the present paper is to provide a stronger geometrical 
interpretation for the role of E(R). 

A second purpose of the paper is to establish stronger 
ties between the subjects of decision theory and information 
theory. The Neyman-Pearson theorem provides the 
structure for the optimum testing of binary hypotheses. 
This has been used by Forney [6] to study the behavior of 
optimum list decoders of channel block codes. Csiszar and 
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Longo [7] showed that the probability of error of optimum 
hypothesis testers based on blocks of measurements is 
exponentially decreasing with block length. The exponential 
decay coefficient is related to the discrimination, a  function 
first introduced by Kullback [8]. Using a similar develop- 
ment, we present various performance exponents in new 
forms and discuss the close relationships between them. 

Our starting point in this paper is the discrimination, and 
its application to the behavior of hypothesis testers. This 
treatment is in part tutorial, and serves to develop in accord 
with our style and purpose a structure that underlies the 
remainder of the paper. The approach taken emphasizes 
the fundamental role played by the discrimination in the 
performance bounds of information theory. 

The study of hypothesis testing is found to be a miniature 
version of the study of channel block codes and the 
discrimination an embryonic form of the mutual informa- 
tion. A function e(r) is defined that describes achievable 
hypothesis testers and their associated performance. The 
reliability-rate function E(R) is then defined by direct 
analogy with e(r), and a number of properties are developed. 

The sphere-packing bound is developed in terms of a  
lower bound to the hypothesis testing problem. This 
provides a simpler and more powerful version of the 
sphere-packing bound. The result is valid for discrete or for 
continuous probability distributions. 

Finally, we turn to the subject of source coding, develop- 
ing an exponential upper bound to the performance of 
optimum compressors of source output data in terms of a  
reliability-rate function F(R,D). This function is defined in 
terms of the discrimination. The resulting bound is used to 
provide a stronger statement of the source compression 
coding theorem. 

II. THE ERROR-EXPONENT FUNCTION 

The concept of discrimination was introduced by 
Kullback and plays a fundamental role in the behavior of 
optimum hypothesis testers. The basic structure consists of 
two hypotheses H, and H2 and their associated probability 
distributions q1,q2 on a discrete measurement space. The 
log likelihood ratio, log (qlk/q2J, is a  random variable, and 
its mean is called the discrimination (in favor of H, against 
Hz). 

Dejnition 1: Let BK be the space of discrete probability 
distributions on a set of K elements. The discrimination is a 
function J: 9’ x BK -+ 59 defined by 

J(q,; q2) = c qlk log qlk. 
k q2k 

We will assume for later convenience that q1 and q2 have 
strictly positive components. 
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The discrimination has the usual properties expected of 
an information measure. It is nonnegative and strictly 
positive if and only if its arguments are unequal. The 
discrimination is convex in each of its arguments. 

ing to some other choice of decision regions and suppose 
p < /?*. Then a > CI*. 

Further, the discrimination is additive for independent 
measurements as a consequence of its logarithmic nature. 
Therefore, the discrimination for n independent identically 
distributed (i.i.d.) measurements is n times the discrimination 
for an individual measurement. If we have n nonidentical 
measurements drawn from a set of J measurement types 
indexed by j (j = 0, * * - ,J - l), and nj is the number of 
measurements of typej, we define the average discrimination 
by 

J(QI; Qd = C ~j F QlkljlOg p j 2kl.i 
where Q, = {Qlklj}, Q, = {Qzklj} give the probabilities of 
measurement outcome k given measurement type j under 
hypotheses H, and H,, respectively, and pj = njln. The 
total discrimination for the n measurements is then n times 
this average discrimination. 

In the next section we study the behavior of type 1 and 
type 2 error probabilities for these optimum decision 
regions. This will be facilitated by introducing the error- 
exponent function. 

Definition 2: Let the distributions q1 and q2 be given. 
Then the error-exponent function e(r) is given by 

where 

e(r) = p$ J(4; q2) r 

This form is related to the mutual information, which can 
be defined as 

If J(q, ; q2) is finite, then e(r) is finite since q1 E Yr. Since 
we assume q1 and q2 have strictly positive components, 
J(q, ; q2) is always finite for finite sample spaces. 

The definition is given an intuitive interpretation as 
follows. We introduce a dummy distribution 4 and then 
select 4 so that J(4 ; q2) is smallest given that J(d ; ql) I r. 
That is, in some sense, select 4 “between” q1 and q2 and at 
a distance r from ql. 

I(Pi Q> = min 9 F PjQklj 1% 2. 
4 

The minimum is achieved when qk = CjpjQklj. This 
version of the mutual information will be used later to pass 
from hypothesis testing to channel encoding. 

An hypothesis-testing procedure is a partition of the 
measurement space into two disjoint sets %  and V. If the 
measurement k is an element of q, we decide that H, is 
true; if k is an element of % ‘, we decide H, is true. 

The probability of accepting hypothesis H, when H2 
actually is true is called the type 1 error probability CC The 
probability.of accepting hypothesis H2 when H, actually is 
true is called the type 2 error probability b. Obviously 

The ensuing theory also holds virtually unchanged if 
instead we use the average discrimination. In this case we 
minimize over a set of transition matrices Q^ = (Q^kI j} as 
follows : 

where 

e(r) = min J(Q; Q2) 
8E% 

=% = {Q^ I J@; Ql> 5 r>. 

Since e(r) is defined as the minimum of a convex function 
subject to a convex constraint, it possesses a number of 
important properties. 

Theorem 2: e(r) is a nonincreasing function defined for 
r 2 0. 

cI = c q2k 
ksW 

P  = ,j& qlk- 

Proof: If r > r’, then 8, 1 B,,, hence e(r) I e(r’). If 
r < 0, then 8, is empty and e(r) is undefined. 

Theorem 3: e(r) is a convex function. That is, given 
r’,r” and 2 E [O,l], then 

e(Ar’ + Jr”) I le(r’) + Xe(r”) 

The problem is to specify (“nc,%“) so that a and p are as 
small as possible. This is not yet a well-defined problem, 
since a generally can be made smaller by reducing &, 
although p thereby increases. The Neyman-Pearson point 
of view assumes that a maximum value of p is specified, say 
B and (%,%‘) must be determined so as to minimize a 
s%ject to this constraint on p (/I I 8,). 

A method for finding these decision regions is given by 
the following well-known theorem. 

Theorem I: (Neyman-Pearson) For any real number T, 
let 

WT) = {k 1 q2k 5 &kewT) 

WT)C = {k 1 q2k ’ hke? 

and let CC*, /I* be the type 1 and type 2 error probabilities 
corresponding to this choice of decision regions. Suppose 
a,/? are the type 1 and type 2 error probabilities correspond- 

where X = (1 - 2). 

Proof: Let q’,q” achieve e(r’),e(r”), respectively, and 
let q* = Aq’ + Xq”. Then J(q*; q2) I AJ(q’; q2) + 
XJ(q”; q2) I Ar’ + Jr”. Therefore, q * E 9Ar,+Xr,, and 
e(r) I J(q*; qJ I AJ(q’; ql) + XJ(q”; ql) = Ae(r’) + 
Ke(r “). 

Since e(r) is convex, it is continuous on (0,co) and is 
strictly decreasing prior to any interval on which it is 
constant. 

Theorem 4: e(r) can be expressed in terms of a parameter 
s as l+S 

e(r,) = -sr, - log 
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where Therefore 

and 

* 
r, = c qk* log qk 

k qlk 

de(r)= 
dr 

-s(r) - r g 

qk* = 

q;k/’ +sq;/,’ fs 

k 
Evaluating the last derivative gives 

Proof: Temporarily ignore the constraints qk 2 0, and 
introduce the Lagrange multipliers s and jl so that $  [(l + s) log F  q:jl+sq;~+s] = -; qk* log 4k* 

qlk 

e(r) = --sr + min ~~klog~ + SCQklogk = -r. 
I k hk k qlk Therefore 

+ A (;Pk - l)] * 

Equating the derivative to zero gives 

qk* = 

q;k/l+sq;/kl+s 

as the optimizing distribution, where A has been evaluated 
so that the qk* sum to one. Notice that qk* has nonnegative 
components and so is a probability distribution. Now s 
should be selected so that J(q*; q2) = r. Since we cannot 
solve for s as a function of r, we leave the result in para- 
metric form, giving r and e(r) as functions of s. 

Theorem 5: 

a) As s --f 0, e(r) + 0 and r + J(q, ; ql). 
b) As s --f co, e(r) + J(q, ; qJ and r -+ 0. 

Proof: By writing 

and 

qk* (qlk/q2k)s’1+s 

q2k = $ hkhk/hk>“‘“” 

qk* (q2k/qlk)1’1+s 

iii = 5 qlkhk/qlk)l’l+s 

we see that qk* goes to q2k and qlk, respectively, as s goes to 
zero and infinity. Evaluating the discriminations for these 
values of q* proves the theorem. 

The Lagrange multiplier s can be given an interpretation 
as a derivative. 

Theorem 6: The parameter s satisfies 

de(r) - = -,y. 
dr 

de(r) - = -s(r). 
dr 

We  use Theorem 6 to find another representation of e(r). 
Whereas Theorem 4 expresses e(r) parametrically with r 
depending on s, the following theorem expresses e(r) with r 
fixed and s depending on r. 

Theorem 7: A representation of e(r) is 

e(r) = max 
SZO 

1+s ) 1  . 

Proof: For each value of s, the bracketed term provides a 
linear function of r. This linear function is tangent to e(r) 
at some point and is otherwise below e(r) since e(r) is 
convex. Take 

SC - de(r) 
dr’ 

This s clearly achieves the maximum of the theorem and the 
right side equals e(r) for this value of s. 

The error-exponent function has been defined in terms of 
a  single measurement. Its later usefulness in studying the 
testing of hypotheses by means of blocks of measurements 
is a consequence of the fact that the error exponent for a  
block of measurements has a simple relationship to the 
error exponent for single measurements. These measure- 
ments need not be identical provided the average dis- 
crimination is used in constructing the error-exponent 
function. 

Theorem 8: Suppose a block of independent measure- 
ments is made. Let Qlklj and Qzklj be the probabilities of 
the kth outcome for a type j experiment under H, and Hz, 
respectively, and let e,(r) be the error-exponent function 
defined on the block experiment. Then 

e&w) = ne(r). 

Proof: Suppose that y is the sequence of n  measurements 
and ql( y),q2( y) are the probability of measurement y under 

Proof: Explicitly write s(r) for the value of s achieving 
hypothesis H, and Hz. Then since the measurements are 

e(r). Then independent, these are product distributions 

e(r) = -Is(r) - (1 + s) log & q21k/1+Sq$1+S. 41(Y) = ,Jli, Qlkrljr 
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and one. Therefore, for all positive s 

The probability distribution Q(y) achieving e(r) is given by 
the tilted distribution of Theorem 4. Therefore 

which is a product distribution. The theorem then follows, 

III. HYPOTHESIS-TESTING BOUNDS 

Although the Neyman-Pearson theorem specifies opti- 
mum decision regions, it does not directly specify the 
performance in terms of type 1 and type 2 error probabilities. 
The type 1 and type 2 error probabilities are given as sums 
possibly involving a large number of terms. It is generally 
not possible to reduce these sums into more useful expres- 
sions. However, approximations exist that are simple and 
often useful in interpreting the performance. 

These approximations can be motivated by reference to 
the Neyman-Pearson theorem, which states that it is 
necessary to consider only threshold decision regions of the 
form 

32 = 
i 

k 1 log qlk 2 T 
q2k I 

W  = 
l 

k 1 log qlk < T 
q2k I 

The major purpose of this section is to develop an explicit 
relationship between a, /?, and T in the form of asymp- 
totically tight upper and lower bounds. The upper bound is 
given by the following theorem. 

Theorem 9: Let e(r) be the error-exponent function for a 
hypothesis testing problem. Then, for any r > 0, decision 
regions defined by 

%  = {k 1 q2kee(‘) 5 qlker} 

ac = {k 1 q2keecr) > qlke’} 

are such that the following are satisfied simultaneously: 

u 5 eeecr) 

/I I e-‘. 

Proof: Let s parametrize the point (r,e(r)). The charac- 
teristic functions of the decision regions satisfy 

4,(k) _< (2 er-e(r))s’l’s 

4&k) _< (E ee(r)mr)l’l+r 

which are verified by examining the case where the char- 
acteristic function equals zero and the case where it equals 

Similarly 

P = ,Eo qlk = $ Cl~kbdk) 

1/1+s 

= e-’ 

u = ,;i q2k = 3 Cl2k&l(k) 

s/l +s 
es(r-e(r))/l +s 

=e -e(r) 

Corollary I : Given a set of n independent measurements, 
then, for any r > 0, decision regions can be defined such 
that the following are satisfied. 

a 2 ,-new 

p I eenr. 

Proof: Follows from Theorem 7. 

Theorem 9 and Corollary 1 give upper bounds on the 
probability of error and give a rapid means of specifying 
decision regions based upon a given error probability 
specification. 

The error-exponent function, therefore, is important as a 
tool for describing simply the performance of hypothesis 
testers and studying the possible compromises between 
type 1 and type 2 error probabilities. 

The error-exponent function will be even more useful if 
we can show that the bounds in Theorem 9 are in some 
sense tight. We next show that this tightness exists when the 
number of measurements is large by providing a lower 
bound in terms of the error-exponent function. This 
theorem is similar to a theorem of Shannon, Gallager, and 
Berlekamp. Our proof maintains closer contact with the 
discrimination and is easier to follow. The result also is 
algebraically tighter with block length. The variances 
appearing in the theorem are defined as follows: 

a12 = $ qk* (i%  $)’ - (; qk* log 5) 2 

022 = 5 % ‘* (log 5) 2 - ($ qk* log 5)’ 

where q * achieves e(r) for the value of r under consideration. 

Theorem IO: Let E > 0 be given, and let y E (0,l) be 
arbitrary. Suppose 

Then 
/? < ye-(‘+&). 

a2 l- 
( 

Cl2 + f-722 
E2 

_ y 
> 

e-M’)+E)* 
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Proof: The Neyman-Pearson theorem states that only Therefore 
decision regions of the form described in terms of a  
threshold T  need be considered. Let T  = r - e(r) and let 
q* achieve e(r). (Notice that this implies the restriction 

kEdPIFnQB !?k 2 ’ - 012 f g22 

T E [ -J(q, ; ql), J(q, ; q2)]. We  will later see in Theorem and if 
11 that other values of the threshold are of little interest.) 
Thus we can write keg(E) 4k ’ ’ 

O& = k q2k e=(‘) _< qlk e’ 
1 I dk Qk I 

then 

( I 

L@C = k q2k ,=(‘) > qlk e’ 

!?k dk 

kE&(&) 4k 2 1 - 012 f 022 - Y* 
2 

So the proof is complete. 

where dk achieves e(r) and is included in the denominator 
for later convenience. The errors are bounded as follows. 

If the measurements are now replaced by blocks of 

Define 
independent measurements, we have the following corollary. 

1  

Corollary 2: Let a  > 0 be given and let y E (0,l) be 
al(&) = k 1 em& < 42k eecr) < qlk e’ arbitrary. Suppose 

Qk - dk 1 p < ye-n(r+d 

a2(c) = 
( 

k 1 eme < 2 e’ < 7 ee@)) Then 
k 

so that %?Jl(s) c a, a2(s) c 4Y, and a2 l- 
( 

q2 + Q2 
1 

-n(&(r)+e) 
ne2 

-ye . 

u = c q2k 2 c q2k 
ks%% k =QI(E) Proof: Replace E by ne in the theorem, and use Theorem 8 

2 k Eli ijke-(e(r)+“). 
together with the fact that variances add for independent 
random variables. 

A similar estimate applies to j?. Thus 

u 2 e-(e(r)+e) kEz(e) dk 

b 2 e-(r+e) key gk* 

We now estimate the summations. Let 

We  now show that stronger than exp [ -nJ(q, ; ql)] 
dependence of the type 2 error probability on block length 
results in a type 1 error probability which approaches 1 
with blocklength. This is a direct analog of a  theorem of 
Wolfowitz [16] and is proven in the same way. (See, for 
example, Gallager [9] .) 

aA = kle-” < !!.!A&(‘) 
1  Qk 

4’lB= 

Theorem 11: Let c = J(q,; ql). Suppose /I I emnr where 
r > c. Then 

u>l- 402 
n(r - c)” 

_ e-n(r-cY2 

where 

0’ = $q2k (logE)2 - (Tq2k10gE)2e 

These can now be estimated by Chebyshev’s inequality. Let Proof: Let %!!,?F be the decision regions, and let 

4Y.lT = (k: llog$e-‘l 2  e) @* = {Y I ql(A 2 q2We-“(c+e)l 

log% - z&log& 
qlk k qlk 

a*’ = {Y I qlW  < 42(y)e-“‘“+“‘I 

where E > 0 is arbitrary and y denotes a sequence of n  
measurements. We  now have Then %!aC c %!T and 

l- Qz = c 42(Y) 
YEW 

= ,,&** q2(y) + y,~~n,. q2(y) 
s yeqzn** ql(Y)en(c+e) + y.,&w*c 42(Y)- 
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This is further bounded by summing the first term over all Theorem 13: E(R) is positive for R < C and zero for 
of 4Yc and the second over all of 4Pc R 2 C, where C is the channel capacity. 

1 - ~1 2 ,& c qlWn(c+e) + yeZee q2(Y) Proof: E(R) is zero if and only if & = Q, which occurs 

le -nren(c+e) + y ,C,.c q2(Y). 
if and only if 

Q E -G(P). 

The second term can be written Hence E(R) is zero if and only if 

c 42(Y) = p [( 
42(Y) Y I h3 - > n(c + E) 

yew*= 41(Y) )I 
where 

42(Y) 
nc = c 42(Y) log - 

Y 41(Y) 

and this can be bounded by Chebyshev’s inequality 

Therefore 

1 
CT2 - u < en(Cmr+e) + _ . 
ne2 

This holds for any E > 0. Hence, pick E = (r - c)/2, 
thereby proving the theorem. 

IV. THE RELIABILITY-RATE FUNCTION 

The error-exponent function e(r) was found to be a 
useful measure of the performance of optimum hypothesis 
testers. In this section the analogous function for the 
channel coding problem is defined as a discrimination; it is 
called the reliability-rate function E(R). Fano [2] notes 
that E(R) can be put in the form of a discrimination. We, 
on the other hand, define E(R) as an extremization problem 
over all such discriminations. Starting from this definition, 
the known properties of E(R) are more simply developed 
and new such properties are found. 

De$nition 3: Let the conditional probability matrix Q be 
given. Then the reliability-rate function E(R) is given by 

E(R) = max min c c pj&klj log c&j 
P de-% j k Q kli 

where 

Theorem 12: E(R) is a decreasing, convex, and hence a 
continuous function defined for R 2 0. It is strictly 
decreasing in some interval 0 I R < R,,,, and in this 
interval the solution satisfies the constraint with equality. 

Proof: Consider the inner minimum, letting E(p,R) 
denote this minimum. Suppose R > R’; then 9, ZJ 8,., 
hence E(p,R) I E(p,R’) and the constraint is satisfied with 
equality in the region where E(p,R) is strictly decreasing. 
For each p, convexity follows since E(p,R) is the minimum 
of a convex function subject to a convex constraint. Finally, 
E(R) is convex since it is the pointwise maximum of a set 
of convex functions. 

for every value of p. This is true if and only if R 2 C. 

We now obtain the properties of E(R) by reference to the 
properties of e(r). Consider the minimization problem 

where 

min min J(&; Q) 
4 de&z 

and q is a dummy argument of a minimization operator. 
The inner minimum is of the form of the definition of e(r) 
and so defines a function e(R). Therefore, it can be solved 
in terms of a Lagrange multiplier s, which is the negative 
of the slope of e(R). The Lagrange multiplier is, therefore, 
positive and 

min min [J(o; Q) + sJ(o; q)] 
4 8 

= min [J(&; Q) + sI(p; &)I 
d 

since qk = cjpj&klj minimizes 

J(&; 4) = T 5 Pje^klj log 2 

as a simple consequence of the positiveness of discrimina- 
tion. Therefore, we have proved the following. 

Theorem 14: E(R) can be expressed parametrically as 
follows : 

E(R,) = max [-sR, + min min [J@; Q) + sJ(&; q)]] 
P 4 d 

where 

R = I(P; &I 

for the values of p,&, which achieve the solution, 

Theorem 3 immediately gives the following corollary. 
Corollary 3: E(R) can be expressed as follows: 

E(R,) = max min -sR, 
P I 

where R, is given by 

Rs = J<Q*; 4”) 
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pj,qk* achieve the solution, and Then 

m r [J(Q*; q*) + iJ(Q*; Q)] 

Now let E(R,p) be the argument of the maximum over p 
in Theorem 14, and let Q*(s) and q*(s) achieve the minima. 

= my  [I(P; Q*) + iJ(Q*; QI] . 

Except for the fact that q* depends on s, Theorem 6 Proof: Multiplying the Kuhn-Tucker condition by pi* 
provides the derivative with respect to R. However, we have and summing overj gives 

for the missing term in the derivative 

f JI ; PjQklj log qk(S) 
‘&d)/ds Qkli = -C C PjQklj qkcS) 

Y = I(P*; Q*) + $ J(Q*; Q) 

k  j 
which is evaluated at the point qk(s) = CjpjQklj. But then 

= my  [I(P; Q*> + ~J(Q*; QI]. 

the derivative becomes Multiplying the Kuhn-Tucker conditions by pi and 

&l,(s) c- 
k ds 

= f ; qk(d = O- 

summing over j gives 

J<Q*;q*) + lJ(Q*; Q) I Y 
S 

Therefore, the dependence of qk on s does not affect the 
derivative. We  have then for each u for all p. Since equality is achieved by choosing p = p*, the 

d-W>p) _ -s 
dR 

and since E(R, p) is convex, this proves the following 
theorem. 

theorem follows. 

Theorem 17: Supposep” achieves E(R); then 

Theorem 15: 
; Q:[i"" j (c pj*Q$tS)S 2 2, if pi” = 0 

E(R) = max max min -sR where 
P szo cj 

- c pj log (F Q$ +‘,,,‘+‘)’ +‘] . 
A= CPj*FQ:{;" (2 Pj*Q:/j"')' 

j 
The two maximizations can be interchanged. Comparing 
the result with Corollary 3 and noting that E(R) is convex, 
we find that 

= ; (7 pj*Q$ ++‘. 

Proof: The Kuhn-Tucker condition can be rewritten 

provided the derivative exists, since the maximum s is over Or 
all straight lines lying below E(R). 

The Kuhn-Tucker theorem (9) can be applied to provide 
useful conditions on the distribution p* achieving E(R). 

; Q;/;‘1”Y:““’ ’ ’ 

This is formally the same as the Kuhn-Tucker condition on since from Corollary 3 
the distribution achieving capacity of a  constrained channel 
[lo] if an expense schedule 

Q;/jl +Sq,j-/l 4-S 

ej = C Q,*lj log 9 

Qk*lj = F  Cj:~;+sq;s,l+a * 

k klJ Carrying out the outer sum, this reduces to 

is defined. The Kuhn-Tucker conditions for a  constrained 
channel then gives 

F  Q;(; +Sq;S’l +’ 2 A 

F Q;j log Q$i * + 1 c Q,*, j log Q& I y 
with equality for all j with pi #  0, where A is a constant. 

T  Pj Qklj S k Qklj Now qk* also satisfies 

where y is a constant and the inequality is satisfied with 
qk* = c Pj"Q;,j = c pj* 

j i 
equality if pi* #  0. 

Theorem 16: Suppose p* achieves E(R) and qk* = 
CjPj*Qtlj. 
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This gives and take the optimizing values of Q,q given by Corollary 4. 
Substitution gives 

Using this in the preceeding inequality completes the proof. 

Corollary 4: Suppose p*,Q* achieve E(R), and let q* be 
given by 

qk* = C  Pj*Q;j* 
j 

E(R) = max max -sR + C pi 
szo P  

I 
j 

Then the following are satisfied: 

1) qk* = 

2) Q* = klj 

Proof: The proof of Theorem 17 shows that 

qk* = (; 7 pj*Q$+.)? 

Selecting A so that &qk * = 1 gives the first condition. The 
second condition is obtained by substituting the first 
condition into 

We now represent E(R) as a maximization problem. This 
is done in terms of three similar expressions, including the 
simple form most frequently used. 

Theorem 18: E(R) can be expressed by either of the 
following three expressions : 

1) 

2) 

3) 

E(R) = max max -sR - (1 + s) 
sto P  [ 

. C  Pj  log (5 Q:/j'" (F PjQi(~'s)s) 

+ sJlog F (T P,e:/jlts)lis] 

E(R) = max max -sR - c pj 
Sk0 P [ 

* log (F Q:(jts (T ~jQ~{~")')] 

E(R) = max max 
sto p 

-SR - log? (7 pjQ:/,J’s)l”] * 

Proof: Write 

E(R) = max -sR + max min min 
S20 P  d 4 

T Pj&k\j log e + S  F F Pj&k\j log $J]] 
W  

which is just the first of the preceeding expressions. It 
remains to prove the equivalence of the three expressions. 
Denote these temporarily by E,(R), E,(R), and E,(R). 
Since the log is concave, we can use Jensen’s inequality to 
write 

E(R) = E,(R) 2 E,(R) 2 E,(R). 

Equality will hold if we can also show that E,(R) 2 E,(R). 
Let p* achieve E(R). Then l+S 
E,(R) 2 max 

S.20 
-sR - log & C Pj*Qkl/!” 

i 1 I 
= max s~o [-SR - (1 + s) log F (F Pj*Q.$/:ts)lts 

1+s 

+ s log F C  Pj*Q.$(jts > 1 . 
j 

However, p* achieves E(R), so by Theorem 15 this becomes 

E,(R) 2 max 
[ 

-sR - (1 + s) 
SZO 

* C ~j* log (; Q:(; +’ (7 ~j*Q:(j’+‘)‘) j 

+ s log &  ($ Pj*Q:/:is)lts] 

and the right side is E,(R). Therefore, we have 

E(R) = E,(R) 2 E,(R) 2 E,(R) 2 E,(R) 

and the theorem is proved. 

V. LOWER BOUNDS TO BLOCK CODE PERFORMANCE 

The application of E(R) to the upper bounds for channel 
block codes is well known [4]. Similarly, the application to 
lower bounds is provided by the sphere-packing bound 
developed in Shannon, Gallager, and Berlekamp [5]. The 
present section provides a simplified approach to the 
sphere-packing bound by posing the channel decoding 
problem in terms of a simple binary hypothesis testing 
problem. The present treatment also results in the minor 
improvement of an algebraically tighter bound. 

The probability of error is to be bounded over the set of 
all block codes of a given rate and block length. A codeword 
is a sequence of symbols from the source alphabet. The 
hypothesis that a given codeword was transmitted, therefore, 
can be restated as the hypothesis that a particular sequence 
of symbols was transmitted, which is of the form of 
hypothesis testing with measurements of different type as 
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has been discussed. Accordingly, we shall lowerbound the 
performance of block codes via considerations which allow 
us to appeal to Theorem 10. 

An important feature of the lower bound, which will be 
derived, is that no assumption of constant-composition 
codewords is made, not even as an intermediate step. This 
is an improvement to previous proofs of the sphere-packing 
bound since it permits us to generalize the lower bound to 
continuous channels with no change in technique. 

Under the preceding restrictions, the most general coding 
scheme considered here is a set of M  n-tuples each used with 
probability l/M, together with a partition of the space of 
output words into M  decode regions {%!, 1  m  = 1, * * -,M}. 
Reception of an output in a,,, causes a decode of the mth 
codeword. Therefore, a  lower bound must underestimate 
the probability of error under the assumption that the M  
codewords and the decode regions have been selected 
optimally. 

The performance of the code can be characterized by 
either 1) maximum probability over the set of codewords, 
or 2) average probability over the set of codewords. We  
will bound the first of these by identifying a suitable 
hypothesis testing problem so that the theory of Section III 
can be applied. 

We  first prove a simple lemma. 
Lemma 1: Suppose {%, 1 m  = 1, * * . ,M} is a partition of 

a  set and 4 is a probability distribution on this same set. 
Then for some %,,, 

Proof: 

,z 
m 
4(Y) = T  B(Y) = 1. 

The lower bound theorem is then as follows. 

Theorem 19: Let (p,),,, be the maximum probability of 
error over all codewords of a  block code having M  = enR 
codewords. Let E > 0 and y E (0,l) be arbitrary, and 
suppose R” satisfies 

Then 

(p,),,, 2  (1 - $  - y) e-“(E(R*)+E) 

where A is an appropriate constant. 

The probability of error, pelm, replaces a and l/M replaces 
j. Since the dummy alternate hypothesis characterized by 4 
has probability of resulting in %,,, of less than l/M, we can 
lowerbound p+ using Theorem 10. This theorem holds for 
any pair of sets, and we can use the theorem directly 
without the necessity of developing additional structure. 

Thus we consider the pair of sets {4Y!,,%I,c} and note that 

Pelm = ,E$ Q(Y I &JJ. 
MC 

Hence by Corollary 2 

PeIm 2 1 - 012 + c7z2 -n(e(R*) +E) 

nc2 
and 

(Pf?),,, 2  Pelm 

where cr1,cr2 are appropriate variances, and by definition 

where 

and pi is the relative frequency of the composition of the 
mth codeword, and the constraint is satisfied with equality 
unless e(R*) = 0. 

Since the composition of the mth word is unknown, we 
bound e(R*) by 

e(R*) < max min C pi C Qklj log @ ia 
p desmj k Q k1.i 

Now since 3,, depends on 4, the right side depends on 4, 
and bounds e(R*) for every 4. 

We  now wish to choose & = CjpjQlklj. However, the 
set %!m depends on 4, and if 4  depends in turn on the 
composition of the mth codeword, the maximization over p 
has no apparent meaning. Instead, let p* achieve E(R) and 
choose 4 = q*, where qk* = Cjpj*Q$j and Q* achieves 
E(R). This choice does not depend on the composition of 
the mth codeword, so there is no possibility of circularity in 
the argument. Next attach the constraint J(Q ; q  *) s R* by 
means of a  Lagrange multiplier. Then 

e(R*) I max min [J(Q; Q) + sJ(Q; q*)]. 
P ci 

W ithout violating the inequality, we set Q = Q* and drop 
the minimum on Q. Then 

Proof: Let 4  be any arbitrary distribution on the output e(R*) I max [J(Q*,Q) + sJ(Q; q*)]. 
letters and d(y) the associated product distribution on the P 

output sequence y. Select m  so that %, is the decode region Now use Theorem 16 to replace J(Q* ; q*) by I(p; Q*). 
satisfying Lemma 1. Then That is, 

,T$ 
m  

d(y) I & I yeencR*+'). 
Q* W  * q  7 PjQi$j log ~ 

C PjQk*lj 
i 

We  are now in a position to use the theory of Section III. and 
The hypotheses are now characterized by Q(y 1 x,) and 
d(y), and these replace Q2(y I X) and Q1(y 1 x), respectively. e(R*) I max [J(Q*; Q) + sl(p; Q*)]# 

P 
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Now recall the definition of E(R). Since E(R*) occurs at a 
saddle point in (p,&), the right side of the preceding 
equation can be replaced to give 

e(R*) _< max min [J(Q; Q) + sl(p; &)I 
P d 

so that 

VI. THE SOURCE CODE RELIABILITY-RATE FUNCTION 

Hence 
e(R*) I E(R*). 

The optimum performance of distortionless source codes 
of block length n and rate R has been studied by Jelinek 
[ll]. He bounds the probability that the source will 
generate a block which cannot be encoded. For fixed rate 
R, this probability decreases exponentially with block 
length, the rate of decay being given by a function of rate. 

This section develops a similar bound for the case of 
source compression codes, which reduces to Jelinek’s 
bound when the distortion is zero. We first develop the 
distortionless bound in terms of the discrimination. 

Dejinition 4: Let a memoryless discrete source be 
characterized by a distribution p. The distortionless 
reliability-rate function is 

(pe)max 2 (1 - “‘zn12 a’2 - y) e-n(E(R*)+e). 

Since aI2 + 022 is constant, the theorem is proved. 

The constant A is only of slight interest. It can be 
evaluated by evaluating or2 + a22. Since 

r712 + rJ22 = T pj [var (log F) + var (log Q$) ] 

and since the composition pj has not been determined, we 
take A as 

A = rn? [var (log?) + var (loge)]. 

We have now a bound on the maximum probability of 
error. This can be used to obtain a bound on the average 
probability of error. The standard technique is used in the 
following theorem. 

Theorem 20: Let pe be the average probability of error of 
a block code having M  = enR codewords. Let E > 0 and 
y E (0,l) be arbitrary. Suppose R* satisfies 

I < ye-“(R*+~), 
M  

Then 

Pe 2 5 1 - Lt. _ y 
nc2 

e-nlE(R*-(log2)ln)+el. 

Proof: Remove the M/2 codewords whose probability of 
error is largest. This results in a code having M/2 = 
enR-“‘g 2 codewords which must satisfy Theorem 19. But we 
are given that 

; 5 ye-“(R*+~)a 

Hence 

$ S ye -n(R*-(logZ)/n+e) 

Let % ‘, denote the set of codewords in the purged code and 
(pe)gax denote the maximum error of this purged code. Then 
the average error of the original code is bounded as follows: 

F(R) = min c pi log a 
BE& Pj 

p: -CBjlOgp^j 2 R 
j 

This is similar to the form of Definition 3. Similar 
arguments show that F(R) is a convex increasing function. 
It is strictly increasing in the interval H(p) I R I log J 
and is zero for R I H(p), where H(p) is the entropy and 
J is the size of the source alphabet. 

By introducing a Lagrange multiplier s, we can solve the 
minimization problem defining 
found to be the slope of F(R), 
F(R), the solution can be written 

F(R) = max sR - log 
St0 

F(R). This multiplier is 
and by the convexity of 

(-q p:~‘+s)l+s] . 
This form shows that F(R) is identical to the exponent of 

Jelinek. 
We now introduce the reliability-rate function for source 

compression codes and develop some of its major properties. 
Later, a source coding theorem is proved that states that 
every source word can be encoded with distortion at most 
nD except for a set of source words of probability pe I 
e -nCF(R,D)+o(n)l. This is a stronger form of the source coding 
theorem, which usually is concerned only with average 
distortion. Knowledge of where F(R,D) is positive provides 
a sufficient condition for the existence of good codes for 
large n. Therefore, the present section also investigates the 
region of positive F(R,D) and shows that it occurs for R 
greater than the rate-distortion function, thereby providing 
the basis for an alternate proof of the source compression 
coding theorem. 

Definition 5: Let Pjk be a single-letter distortion function 
associated with a memoryless source. The reliability-rate 
function for associated source compression codes is given by 

h 

F(R,D) = max min c bj log b 
Q ~E@R.D i Pj 

where 

9 8: F F 8jQklj log Qk'j ' R, 
C  8jjQklj - 
i 

Invoking Theorem 19 completes the proof. 
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Notlce that the set 9’R,D involves constraints that are 
related to the usual definition of the rate-distortion function’ 

B(D) = *mtD T  &’ PjQklj log Qkli E C PjQklj j 

9D = Q 1 C C PjQk\jPjk 5 D  
i k 

so that F(R,D) should have an intimate relationship with 
B(D). 

Theorem 21: F(R,D) is convex in both variables. It is 
increasing in R and in D. 

Proof: The inner minimization is the minimum of a 
convex function subject to convex constraints and is 
convex in (R,D). The outer maximum is then over a set of 
convex functions and hence yields a convex function. 
Similarly, the inner minimum on p is increasing in R and 
in D and hence F(R,D) also behaves in this way. 

Theorem 22: F(R,D) is positive if R > B(D) and is zero 
if R I B(D). 

Proof: F(R,D) is zero if and only if 8  = p, and it is 
otherwise positive. Thus, the minimization problem 
defining F(R,D) will achieve its minimum at fi = p and so 
equals zero if and only if p  E PR,D for every value of 0. In 
particular, p  E PR,J@ for the value of & achieving B(D), 
which implies that B(D) = 1(p,@ 2 R. Thus F(R,D) = 0 
implies R I B(D). Conversely, if R > B(D), then a 0 
achieving B(D) is such that I(p,@ < R, and hence 
p $! p&@. Therefore F(R,D) > 0. 

In the range of interest, F(R,D) is strictly increasing in 
both variables; hence, the constraints involving R and D 
are satisfied with equality. Therefore, we can evaluate 
F(R,D) by means of Lagrange multipliers. This gives the 
parametric representation 

F(R,D) = sR - stD + max min c pj log fi 
Q B j P j 

- S 
Q W  T T  PjQklj 1% ~ 

C BjQklj 
j 

- t c c 8jQkjjPjk 
.i k 

where R,D are given in terms of the optimizing distributions. 

Theorem 23: If p*,Q’ achieve F(R,D) and q * is given by 

qk* = C  Pj*QZij 
j 

then the following are satisfied 

k 

1  W e  use the notation B(D) rather than the usual R(D) to avoid 
confusion with the code rate R appearing in F&D). 

Proof: The maximin occurs at a  true saddle point and 
hence equals the minimax. The first relation is obtained in 
the same way as is the similar expression for rate-distortion 
functions. The second relation is obtained by first finding 
the result analogous to Theorem 17 and then simplifying by 
usmg the expresslon for Q,*l,. 

We  now make use of Theorem 23 in order to obtain a 
convenient representation of F(R,D). 

Theorem 24: F(R,D) can be expressed as follows. 

F(R,D) = sR - stD + max -log c p. c q 
4 I 

j , (k ketpj*)-s] 

where s E [O,co], t E [ - co,01 are arbitrary, and R,D are 
given in terms of the optimizing q. 

This theorem evaluates F(R,D) parametrically at fixed s 
and t. A representation, which evaluates F(R,D) at fixed R 
and D and is analogous to the most common representation 
of E(R), is given next. 

Theorem 25: F(R,D) can be expressed as follows: 

F(R,D) = max min max 
s>o tso q [ 

sR - stD 

- @~Pj (~4.keipj*)-r]. 

Proof: In the parametric representation following 
Theorem 22, the bracketed term is convex in fi and concave 
in Q. Therefore, the solution is at a  saddle point and the 
maximin equals the minimax. Taking the maximum first is 
equivalent to solving the parenthesized rate-distortion 
function, and we can write the equivalent form [IO] 

F(R,D) = sR, + min 
[ 
c bj log !!J A 

-~,~~m~~[tD+~pjlog~Fqke’“l.)lD. 

Now substitute the optimizing p* from Theorem 23. This 
results in 

F(R,D) = sR, + min max 
[ 

-stD 
t.50 q 

-hCP. c4 j , ( k ketp’fo] . 

Finally, the value of s that must be used to achieve F(R,D) 
at a  given R is that positive value of s that maximizes the 
entire right side, since F  is convex in R and 

The channel code reliability-rate function provides an 
upper bound to the performance of channel codes only when 
the Lagrange multiplier s is smaller than one. A similar 
limitation occurs in the following. We  define a restricted 
version of F(R,D) which will be used. 
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Definition 6: The restricted reliability-rate function for 
source codes F,(R,D) is given by 

F,(R,D) = max min max sR - stD 
se10,ll tso 4 

- 1%~ Pj (F ClketpJk)-s]. 

Notice that this differs from F(R,D) only in the restriction 
of the range of s, and that I;,(R,D) is zero if and only if 
F(R,D) is zero. This representation of F,(R,D) will be 
useful in proving the upper bound of Theorem 26. The 
output probability distribution q will arise as a distribution 
on an ensemble of codes. Anticipating this result, we point 
out that the distribution q achieving Fo(R,D) is a good 
distribution with which to randomly select codewords for a 
code of rate R and distortion D. As we shall see, such a 
random selection of codewords will usually give a good 
code. Roughly speaking, some good codes of rate R and 
distortion D will have a composition approximated by q. A 
lower bound is required before we can assert that all good 
codes have this distribution. 

We now are ready to prove a source compression 
theorem. For a given block length n and distortion D, we 
are interested in the probability of occurrence of a source 
word that cannot be encoded with distortion less than or 
equal to nD. We shall see that, for appropriate codes, an 
upper bound on this probability goes to zero exponentially 
with block length, with decay coefficient given by F,(R,D). 
The source coding theorem then follows by using Theorem 
22 to note where F,(R,D) is positive. 

Theorem 26: It is possible to select M  = enR codewords 
so that the probability that a source word occurs, which 
cannot be encoded with distortion nD (or less), satisfies 

pe I e -nCFoULD)+o(n)l 

where o(n) + 0 as n + co. 

Proof: We shall employ a random coding argument. 
First let 

T = -C<X,Y> I P,(x,Y> I 4 

T(x) = {Y I P,~Y) 5 no> 

and let s,t be Lagrange multipliers associated with I;,(R,D) 
at R,D. Then 

Pe = ; P(X) j?, (1 - W7yJ) 

where {Y,} is the set of codewords and $ is the charac- 
teristic function of the set T. Now select the codewords at 
random with an independently identically distributed 
(i.i.d.) distribution q(y). Then the expected value of pe is 

Now let 

x: C q(y)e’Mw’)-“=‘) 2 e-“R 
Y I 

so that 

P, I E P(X) + c P(X) (1 - 2) q(y))M 
w w 

Replacing the first term by a sum ov:r all x, noting the form 
of Theorem 24, and naming the sccc.Znd term pez gives the 
following 

where 
j, 5 e -nFo(RJJ) + Pez 

q(y) 1 . 

The summation in the exponent is a cumulative distribution 
function and can be upperbounded by means of Chernoff 
bounds [15]. Using Jelinek [l I], Theorem 5.7, we have the 
following 

Tg, q(y) 2 3 exp n 
[ 
y,(t) - Q,‘(t) + t F] 

n 

where 

y,(t) = n-l c n(j 1 x) log F qkefPjr 
j 

=n - ’ log C q ( y)etp(x*y). 
Y 

Pick t 5 0 so that y,‘(t) = D. This gives 

pez 2 $ P(X) exp nR + log c q( y)et(p(“~y)-nD) 
Y 

+ log t I) 
5 = +[exp tJ2ny,“(t)]. 

But, by the definition of %  

nR + log c q(y)e’(P(X*Y)-“D) 2 0. 
Y 

Therefore, for s E [O,l] 

pe2 I gp(x)exp (-exp [s [nR + logTq(y) 

. eOCwPnD)l + log rl 
J 

5;e = c P(X) (1 - c q(Y)&GY))M x Y 

= ; P(X) (1 - y$cx) q(Y)): 
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TABL 

Channel (QkI J) 
Capacity 

C = max Z(p,Q) 
P 

Expense Schedule (e,) 

Capaci ty-Expense Funct ion 

C(S) = ,yzs G,Q) 

9s = {P I e(P) 5  SI 

Reliability-Rate Funct ion 

E(R) = max min .Z(Q,Q) 
P dePR 

Constrained Reliability-Rate 
Funct ion 

E(R,S) =  max min Z(Q,Q) 
PE@SdEPR 

EI 

Source (p,) 

Entropy 
H = rn$ Z(p,Q) 

Distortion Measure (p,3 

Rate-Distortion Funct ion 

-2, = tQ I d(Q) 5  DI 
Reliability-Rate Funct ion 

Note: max achieved when  Q  is 
the identity 

Constrained Reliability-Rate 
Funct ion 

Now use the inequality eX 2 1 + x 

pez 5 e-it-l z p(x)e-S”R C q(y)et(P(x,Y)-nD) -‘. 
Y 

Hence, replacing the sum over %  by a sum over all x gives 

Pe2 I e-l~-le-~W,D)~ 

Finally, we have 

F, I e  -nFo(R,D) + e-l(-le-nFo(R,D) 

< (1 + 2e-‘eetG” >e- nFo(R,D) 

where 
tJ2 = y,“(t). 

Moving the parenthesized term into the exponent completes 
the proof of the theorem. 

Since F(R,D) is positive for R > B(D), we can find good 
codes in this region. We  next state the source compression 
coding theorem as usual in terms of an average distortion 
rather than in terms of a  maximum distortion. 

Theorem 27 (Source compression coding theorem): Given 
a finite-alphabet memoryless source with bounded fidelity 
criterion, any E > 0, and any positive D it is possible to 
choose M  codewords such that the average distortion is 
less than D, provided that 

M 2  enCB(n)+el 

and n is sufficiently large. 

Proof: Follows immediately from Theorem 22 and 
Theorem 26. 

417  

VII. SUMMARY 
The various performance bounds of information theory 

have been organized in a common setting. This was done in 
part by emphasizing the fundamental role played by the 
discrimination. These bounds are discriminations evaluated 
for probability distributions having certain desirable 
properties and the parameters s,p etc., which appear in 
tilted probability distributions are nothing more than 
Lagrange multipliers. 

This point of view is partly a matter of taste. Most of 
information theory can be developed without reference to 
the discrimination. This latter approach, however, fails to 
recognize the common mathematical structure that underlies 
many of the traditional results. 

A summary of the various bounds is given in Table I. In 
order to strengthen the analogies, entropy is shown as the 
minimum of a mutual information although the minimum 
can be trivially evaluated. Similarly, F(R) is expressed in 
terms of a  maximum although the maximum can be 
trivially evaluated. 

The channel reliability rate function E(R,S) in the 
presence of an input constraint (expense schedule) is also 
shown although it has not been discussed. It is a  straight- 
forward generalization of E(R). 
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