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1 introduction

1.1 Overview

This report closely follows Nguyen et al.’s work [4], where they establish the Correspon-
dance between loss functions used for 0-1 loss in binary Classification and f -divergence of
label-related distributions induced by dimension-reducing quantizers for feature vectors.
The existence of quantizers change turn the classical problem of learning a discriminant
function to a jointly estimation of optimal quantizer and discriminant function. Based
on this setting, they investigate the necessary and sufficient conditions for surrogate loss
function that yield Bayes consistency for empirical risk minimizer.

Note that no extended work or generalized results are shown in this report. Instead,
it may server as a supplementary materials to understand the original paper as we fill in
extra details and more accessible explanations. The following sections will discuss problem
formulations, main theorems in Nguyen’s paper and related works. Furthermore, we will
focus our attention on one of major results where it includes beautiful constructive proof
and briefly mention the other two due to limited space.

1.2 Problem Formulation and Notations

The notations used throughout the report will be exactly the same with the original paper
for consistency. Consider the classical setting of binary classification problem: let X be
Borel subset of Rd, Y be the set {−1,+1}, and P be the joint law of the pair of random
variable (X,Y ) that takes values in X×Y. LetQ be a collection of stochastic transformation
Q : X → Z such that Z takes values in discrete vectors of dimension m (dimension does
not matter for the purpose of discussion). Let γ : Z → R be discriminant function.
Given training samples {(X1, Y1), . . . , (Xn, Yn)}, the goal is to determine a pair of (γ,Q)
such that Bayes risk RBayes(γ,Q) := P[Y 6= sgn(γ(Z))] = E

[
1{sgn(Y γ(X))≥0}

]
is minimized.

Since 0-1 loss is nonconvex, we typically consider a relaxation of 0-1 loss: φ such that
Rφ(γ,Q) := E[φ(Y γ(X))].
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2 Summary of Main Results and Related Work

2.1 First Result

Let optimal φ-risk be
Rφ(Q) := inf

γ∈Γ
Rφ(Q, γ).

where Γ is the set of all measurable functions of Z. Let label-related distribution induced
by quantizer Q(z|x) be

µ(z) := P[Y = 1, Z = z] = p

∫
X

Q(z|x)dP[x|Y = 1] (1)

π(z) := P[Y = −1, Z = z] = q

∫
X

Q(z|x)dP[x|Y = −1] (2)

(3)

where p = P[Y = 1], q = P[Y = −1]. Let f -divergence between µ and π be

If (µ, π) :=
∑
z∈Z

π(z)f

(
µ(z)

π(z)

)
where f : [0,+∞] → R ∪ {+∞} is a continuous convex function. The brief discription of
the first main result would be the following relation

Rφ(Q) = −If (µ, π) (4)

under certain regularity conditions. Since we will have a thorough discussion on this result,
details will be presented later.

2.2 The other two results

Note that for the other two results, only informal demonstration are introduced to briefly
explain the results, essential notions included to avoid unnecessary ambiguities. For more
precise statements, refer to [4]. Conisder specific class of f that has the expression

f(u) = cmin{u, 1}+ au+ b (5)

where a, b, and c are scalars. Consider the sequence of classes of functions and quantizers,

C1 ⊂ C2 ⊂ . . . ⊂ Γ and D1 ⊂ D2 ⊂ . . . ⊂ Q
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where Γ is the set of all measurable functions of Z and Q is the class of constrained
quantizers with restriction that µ and π are strictly positive measures. Let empirical φ-
risk and corresponding risk minimizer be

R̂φ(γ,Q) = min
(γ,Q)∈(Cn,Dn)

1

n

n∑
i=1

∑
z∈Z

φ(Yiγ(z))Q(z|Xi)

(γ∗n, Q
∗
n) = arg min

γ∈Γ
R̂φ(γ,Q)

Let minimum Bayes risk be

R∗Bayes := inf
(γ,Q)∈(Γ,Q)

RBayes(γ,Q) (6)

Theorem 2 states if f have the expression in Equation (5) for all P ∈ P(X× Y), we have

lim
n→∞

RBayes(γ
∗
n, Q

∗
n) = R∗Bayes in probability (7)

under certain regularity conditions. In other words, theorem 2 provides a sufficient condi-
tion on surrogate loss function φ where ERM algorithm can yield Bayes consistency.

Then, a natural question to ask would be whether there exist other classes of surrogate
loss function φ so that ERM algorithm is also Bayes consistent. The brief answer is
negative. Qualitively speaking, we need to group loss functions based on certain relations
that suffices to dichotomy the collections with respect to Bayes consistency. Nguyen et
al. approached this problem by the following steps:

1. Establish the partial ordering of quantizers based on optimal risk incurred by us-
ing loss function φ (the partial ordering is extremely similar to the concept more
informative experiment in Blackwell’s work [2])

2. Define equivalent class of loss functions by grouping loss functions that result in the
same ordering between any two quantizers under any possible distributions, which is
defined as universal equivalence by Nguyen et al. [4].

3. First find rules (rules are statement in Theorem 3) to group equivalent f instead of
rules to group φ. Then group f by suing the correspondance between f and φ in
Equation (4).

4. Use the facts

(a) The necessary condition for φ such that the pair (γ,Q) that yield Bayes con-
sistency has to minimize Bayes risk in population level. In other words, f has
to induce total variation distance via correspondance between φ and f in Equa-
tion (4) since divergence functional induced by 0-1 loss differs total variation
distance only by constant.
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(b) f such that If is universal is equivalent to the family in Equation (5) by rules
in step 3.

To summarize, Nguyen et al. group φ (or compare φ) in terms of f . The motivation of
doing so is not explicitly mentioned in the paper. However, a reasonable explanation is
related to the fact that there is more degree of freedom to construct loss function φ that
results in same f than the other way around. More details will be given in the Section 3.
Although a quick example given in [4] can be used to demonstrate the point. Consider

2.3 Related Works

Nguyen et al. mentioned more than once that, the discussion related to loss function and
divergence between label-related distribution first appeared in Blackwell’s work on com-
parison of experiment [2]. Even though the phrases in two papers are not exactly the
same, the given quantizer can induce an experiment (experiment is defined to be a finite
collection of possible distribution on observations) and minimum loss that actions can in-
cur given specific experiment corresponds to the f -divergence. An further generalization
to multiclass classification is given by [?]

Also, when discussing Bayes consistency, Nguyen et al. considered the setting that
ERM is minimizing over all measurable functions which may not necessarily the case.
For most of time, we always constrain the hypothesis set to a certain class of function.
Sriperumbudur et al. [5] has some work on similar subject except in their case, another
distance measure on probability, named the integral probability metrics, are considered.

On application aspect, establishing the correspondance between discriminant function
and f -divergence provides a way to estimate divergence by convex risk minimization [3].

3 Discussions

First, we give precise statement of theorem 1 and helper lemma under certain assumptions.
Since the proofs of the following Lemma 1, Lemma 2 are very straightforward, it is not
necessary to rewrite it here again. Instead, we illustrate the results by some imaginary
plots by describing procedure in steps to provide geometric intuitions. As for Theorem 1,
we will rewrite the proof and fill in more details.

Assume the following,

Assumption 1. Assume the following:

A1. φ is convex and differentiable at 0 and φ′(0) < 0;

A2. φ is continuous;
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A3. Let α∗ = inf{α ∈ R ∪ {+∞} : φ(α) = inf φ}. If α∗ < +∞, then for any ε > 0

φ(α∗ − ε) ≥ φ(α∗ + ε) (8)

Remark. In the original paper, the statement of A1 is: φ is classification-calibrated, which
is also known as Fisher consistency that origins from classical parameter estimation setting.
Informally, we say φ is classification-calibrated if γ∗ = arg minγ∈Γ E[φ(Y γ(X))] is such that
sgn(γ∗) = f∗, where f∗ is optimal Bayes decision rule. Nguyen et al. used a definition
tailored to binary classification case and gave a necessary and sufficient condition for φ to
be classification-calibrated when φ is convex (same as A1 stated here). Proof can be found
in [1].

For a lower semicontinuous convex function, f : R → R ∪ {∞}, convex conjugate of f
is defined to be: f∗(u) = supv∈R(uv − f(v)). Consider

Ψ(β) = f∗(−β) (9)

. Let β1 := inf{β : Ψ(β) < +∞} and β2 := inf{β : Ψ(β) ≤ inf Ψ}.

Theorem 1. [4]

(a) For any margin-based surrogate loss function φ, there is an f -divergence such that
Rφ(Q) = −If (µ, π) for some lower semicontinuous convex function f In addition, if
φ is a decreasing convex loss function that satises conditions A1, A2 and A3, then the
following properties hold:

(i) Ψ is a decreasing and convex function;

(ii) Ψ(Ψ(β)) = β for all β ∈ (β1, β2)

(iii) there exists a point u∗ ∈ (β1, β2) such that Ψ(u∗) = u∗

(b) Conversely, if f is a lower semicontinuous convex function satisfying all conditions
(i)–(iii), there exists a decreasing convex surrogate loss φ that induces the f -divergence
in the sense of following two equations.

f(u) := − inf
α

(φ(−α) + φ(α)u) (10)

Rφ(Q) = −If (µ, π) (11)

The proof of Theorem 1 mainly relies on exploiting the properties of constructed inter-
mediate functions, which are presented as follows. Define

φ−1(β) := inf{α : φ(α) ≤ β} (12)

where inf ∅ := +∞.

5



Lemma 1 (Properties of φ−1 ). [4] Suppose that φ is a convex loss satisfying assumptions
A1, A2 and A3.

(a) For all β ∈ R such that φ−1(β) < +∞, the inequality φ(φ−1(β)) ≤ β holds. Further-
more, equality occurs when φ is continuous at φ−1(β).

(b) The function φ−1 : R→ R is strictly decreasing and convex.

Remark. (a) The results still hold without assuming A1-A3 as long as φ is convex.

(b) When φ is convex, what prevents us to define inverse of φ , for certain β is that there
may exist two distinct α such that φ(α) = β. One solution is to project increasing part
of curve (if it exists) to decreasing part to make φ monotone on Λ =

{
α : φ−1(β) ∈ R

}
,

which is roughly geometry interpretation of the effect of φ−1. In this way, we can
guarantee inverse of φ is well-defined.

(c) By plotting out the figure, we can easily obtain statement in part (a) of the lemma. As
for part (b), since plot of inverse can be obtained via mirroring plot of φ by line α = β,
it can be observed directly φ−1 is convex if φ is monotonically decreasing.

(d) Based on the definition of φ(φ−1(β)), we can claim all functions have stair shape
where lines that are not lying along α = β must be flat. Indeed, all discontinuities in
φ(φ−1(β)) must sits left to or at α∗.

Based on function φ−1, we define Ψ̃ : R→ R to be:

Ψ̃(β) :=

{
φ
(
−φ−1(β)

)
, if φ−1(β) ∈ R

+∞, otherwise
(13)

Lemma 2 (Properties of Ψ̃). [4] Suppose that φ is a convex loss satisfying assumptions
A1, A2 and A3. We have:

(a) Ψ̃ is strictly decreasing in the interval (β̃1, β̃2). If φ is decreasing, then Ψ̃ is also
decreasing in −∞,+∞. In addition, Ψ̃ = +∞ for β < β̃1

(b) Ψ̃ in convex in (−∞, β̃2). If φ is a decreasing function, then Ψ̃ is convex in (−∞,+∞)

(c) Ψ̃ is lower semi-continuous, and continuous in its domain.

(d) For any α ≥ 0, φ(α) = Ψ̃(φ(−α)). In particular, there exists u∗ ∈ (β̃1, β̃2) such that
Ψ̃(u∗) = u∗.

(e) The function Ψ̃ satisfies Ψ̃(Ψ̃(β)) < β for all β ∈ dom(Ψ̃). Moreover, if φ is a
continuous function on its domain {α ∈ R : φ(α) < +∞}, then Ψ̃(Ψ̃(β)) = β for all
β ∈ (β̃1, β̃2)
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Remark. (a) Same as Lemma 1. A1-A3 assumptions are not necessarily needed for sev-
eral results.

(b) Based on notation, the effect of performing Ψ̃ in geometry is when β is specified, find
the leftmost α such that φ(α) ≥ β, then flip the sign of α to get the corresponding
function value. part (d) in Lemma 2 has very straightforward interpretation of this
procedure. Indeed, we fix α > 0 first, let β′ = φ(α). For the convenience of discussion,
consider the Since φ on (−∞, 0) is decreasing, thus inverse is well-defined. We have
φ−1(β′) = α. Therefore φ(α) = Ψ̃(φ(−α)).

(c) part (a) and (e) are good examples where we can see how A1, A3 plays its role here.
The reason why Ψ̃ always decreases (or never increases) the input’s value is due to
the facts that if α∗ ∈ R, right side is always flatter than right side since for the same
deviation from α∗, the left side alpha incurs larger loss and another fact is that α∗

is always larger than 0 since point 0 is at decreasing side, that indicates whenever the
points left from a∗ flip the sign to −α, the resulted φ(−alpha) is always no greater than
original φ(α).

proof of Theorem 1. For part (a), as we can observe from the results, even when φ is not
convex, f can also be specified. Indeed, Then the optimal φ-risk is:

Rφ(Q) = inf
γ
Eφ(Y γ(Z)) (14)

= inf
γ

∑
z

φ(γ(z))µ(z) + φ(−γ(z))π(z) (15)

=
∑
z∈Z

inf
α

(φ(α)µ(z) + φ(−α)π(z)) (16)

=
∑
z

π(z) inf
α

(
φ(−α) + φ(α)

µ(z)

π(z)

)
(17)

Equation (16) is due to for each z, γ(z) has fixed valued. Thus dependency on γ can be
suppressed. Now we show with extra assumptions on φ, the corresponding f will have
some properties.

f(u) = − inf
α∈R

(φ(−α) + φ(α)u) (18)

= − inf
{α,β|φ−1(β)∈R,φ(α)=β}

(φ(−α) + βu) (19)

= − inf
β:φ−1(β)∈R

(
φ
(
−φ−1(β)

)
+ βu

)
(20)

= − inf
β∈R

(βu+ Ψ̃(β)) (21)

= sup
β∈R

(−βu− Ψ̃(β)) = Ψ̃∗(−u) (22)
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In Equation (19), β is introduced to substitute α. Therefore, infimum over α becomes
infimum over the pair (α, β) under restriction φ(α) = β. In Equation (20), for level set
φ(α) = β, it may contain more than one elements. Since A3 tells us for same deviation from
α∗, deviation of left side always suffer more loss or has greater function value. Therefore,
if we pick leftmost α such that φ(α) = β, we can guarantee φ(−α) < φ(α). Furthermore,
leftmost α is exactly how φ−1(β) is defined. That is why we can substitute α with φ−1(β)
to get the infimum over α. (Note that decreasing allows flat components comparing to
strictly decreasing)

Also, since φ is decreasing, by using part (b) and (c) of Lemma 2, we can express Ψ̃ as

Ψ̃(β) = Ψ̃∗∗(β) = f∗(−β) = Ψ(β) (23)

Therefore, Ψ̃ = Ψ, which concludes the proof of part (a).
One things that is of interest is that we can claim that any φ that can induce a f -

divergence must have the expression:

φ(α) =


u∗, if α = 0
Ψ(g(α+ u∗)), if α > 0
g(−α+ u∗), if α < 0

(24)

where g : [u∗,+∞) → R is some increasing continuous and convex function. We consider
α in different intervals (or point). Let u∗ := α(0) ∈ (β1, β2). From part (d) of Lemma 2, Ψ
defined via α gives Ψ(α(0)) = α(0), which satisfies the condition Ψ(u∗) = u∗ for Ψ related
to conjugate of f . If α > 0, then α 7→ φ(−α) is increasing and convex. Then if we use
some increasing continous and convex function to construct a legal φ(−α) on (0,+∞), we
can use part (d) of Lemma 2 to represent φ(α) using φ(−α) with Ψ. And when α < 0, we
have already covered this case when considering α > 0.

Now we proceed to prove part (b) of Theorem 1. Recall that part (b) requires us to
specify φ when f is given. The main point here is not only we can show the existence, but
also we claim that any φ constructed in Equation (24) can lead to f related to Ψ.

Since f is lower semicontinuous by assumption, again we can write

f(u) = f∗∗(u) = Ψ∗(−u)

= sup
β∈R

(−βu−Ψ(β)) = − inf
β∈R

(βu+ Ψ(β))

Also recall that Ψ̃ is defined via φ and Ψ is defined via f . The available relations we have are
f = − infβ∈R(βu+ Ψ(β)). By substituting β = φ(α), we have f = −infβ,α(φ(α)u) + Ψ(β).
Meanwhile, Ψ̃(β) = φ(−φ−1(β)) = φ(−α). If we can show Ψ̃ = Ψ, then existence of φ
can be verified. Indeed, consider u∗ ∈ (β1, β2). When β ≥ u∗, since g(u∗) = u∗ and g is
increasing, there exists α > 0 such that g(α+ u∗) ≥ u∗. Since from construction φ(−α) =
g(α+u∗) = β, to make φ−1(β) = −α be well-defined, we need to choose smallest −α, which

8



is equivalent to choosing largest α. It then follows quickly that Ψ̃(β) = φ(−φ−1(β)) =
φ(α) = Ψ(g(α + u∗)) = Ψ(β), where the first equality is from definition, second from
φ−1(β) = α, third from construction of φ by choosing proper g. When β < β1, then
Ψ(β) = +∞. By following the link from Ψ to φ to Ψ̃, we obtain Ψ̃(β) = +∞. The last
case where β1 ≤ β < u∗ < β2 is very similar to the first case. By the way of constructing φ,
φ(α) = Ψ(g(α+u∗)) for α > 0. Choose smallest α such that φ(α) = β such that α = φ−1(β)
is well-defined. Then Ψ̃(β) = φ(−φ−1(β)) = φ(−α) = g(α+u∗) = Ψ(Ψ(g(α+u∗))), where
first equality is by definition of Ψ̃, second by α = φ−1(β), thrid by construction of φ and
last by assumption (ii) in Theorem 1 and the fact g(α+ u∗) ∈ (β1, β2).
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