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1 Introduction

Machine learning algorithms have shown incredible performance in several inference tasks such as image
classi�cation, speech recognition, and game playing [2�4]. Although these algorithms work excellently
in natural settings (i.e., test data generated in the same way as the train data), their performance drop
signi�cantly when the test data is corrupted adversarially, at times in a manner that is imperceptible by
human beings [5]. Such examples where the input to a trained machine learning model is perturbed so
as to increase the probability of wrong inference is called adversarial examples. In image classi�cation,
adversarial examples might include something as simple as adding small perturbations imperceptible
to humans, changing surrounding areas of the main object in an image or even simple rotations or
translations [6,7]. The existence of such adversarial examples is alarming in several situations, because
of the use machine learning algorithms in several critical examples, such as medical diagnosis or self-
driving cars, e.g. self-driving cars that rely on real-time image recognition might end up with making
wrong predictions in the presence of, say, di�erent lighting or weather than the one it is trained in,
or medical diagnosis might end up predicting some hence making it important for us to analyze the
performance of machine learning algorithms in the presence of adversaries. The existence of such
examples raise serious questions about the robustness of the existing state-of-the-art machine learning
algorithm and risk of using them in critical applications.

The existence of such adversarial examples have motivated researchers to come up with algorithms
that can defend against particular examples e�ectively, however, this also resulted in creation of more
and more of such adversarial examples which the existing algorithms does not perform well on, to the
extent that there is a virtual race between designing adversarial examples and designing algorithms
that can defend them. As reported in the paper [1], in the current scenario, the attackers generating
adversarial examples are winning, e.g. it has been shown in [8], that carefully designed gradient-based
algorithms may fool most of the existing defense algorithms.

Hence, instead of designing defense algorithms against particular adversarial examples, this paper
[1] takes a di�erent approach and establishes theoretical guarantees on the performance of learning
algorithms in the presence of adversaries during the testing phase. The paper [1] uses adversarial
training as it appears to be quite e�ective against adversarial examples as described in literature [10,11]
which optimizes over adversarial loss during the training phase as described next.

Let (x, y) ∈ X × Y be the data points drawn according to some unknown distribution D. Let F
be a hypothesis class and l(f(x), y) be the loss associated with f ∈ F . This paper [1] considers l∞
adversarial attacks wherein, an ε-attack can be described as follows: the adversary is allowed to observe
the trained model, and given a test data, x, the adversary �nds a data point x′ such that ‖x−x′‖∞ ≤ ε
and l(f(x′), y) is maximized. Thus, to have better test performance, the learning algorithm should
solve the following optimization problem, called as the adversarial risk minimization problem:

min
f∈F

1

n

n∑
i=1

max
‖x′i−xi‖≤ε

l(f(x′i), yi), (1)

∗This is a review of [1] used as a report for the course project ECE 543: Statistical learning theory.

1



where {xi, yi}ni=1 are i.i.d. training examples drawn according to D. Two main interest of re-
searchers related to adversarial risk minimization are the following: 1) solve the (1), and 2) character-
ize the generalization property of the adversarial risk, i.e., the gap between the empirical risk in (1)
and the expected risk ED[max‖x−x′‖∞≤ε l(f(x

′), y)]. For neural networks both these questions are still
open. Further, it has also been shown, that for neural networks empirical risk minimization might not
imply generalization.

This paper [1] aims at better understanding of the generalization ability of several classi�ers and
focus on l∞ adversarial attacks by �nding tight bounds on Rademacher complexity for such class of
classi�ers. The main contributions of this paper [1] can be summarized as follows: 1) they provide
a tight bound on the adversarial Rademacher complexity and show that it is always greater than or
equal to the Rademacher complexity in the natural setting. It is shown that when the weight vector of
the classi�er has a bounded lp norm, then there is a polynomial dependency on the dimension of the
data. This polynomial dependency is unavoidable, uunless, p = 1. 2) They provide a lower bound for
Rademacher complexity for neural networks which is shown to have a dependency on the dimension
of the data. Next, we discuss the problem statement and preliminary results.

2 Notations & problem setup

Let X ⊆ Rd and Y be the feature and label spaces, respectively, distributed according to D. Let
F ⊆ VX be the hypothesis class, where V could be di�erent from the space Y. Let l : V × Y 7→ [0, B]
be the loss function, where B is a positive constant. Further, lF := {(x, y) 7→ (l(f(x), y)) : f ∈ F}. Let
{xi, yi}∞i=1 be n i.i.d. training examples drawn from D, the empirical risk, Rn(f), and average risk, R(f)
are de�ned using their standard de�nition as, Rn(f) =

1
n

∑n
i=1 l(f(xi), yi) and R(f) = ED[l(f(x), y)].

Also, as we know, the Rademacher complexity for a given sample S = {z1, z2, . . . , zn} is de�ned as
follows:

RS(H) =
1

n
Eσ[sup

h∈H

n∑
i=1

σihi]

where σi are the Rademacher random variables. Let, B∞x (ε) := {x′ ∈ Rd : ‖x−x′‖∞ ≤ ε} be the ε ball
around the data point x, then we de�ne the average adversarial risk as, R̃(f) = ED[maxB∞x (ε) l(f(x

′), y)].

Similarly, as described before, the empirical adversarial risk is denote by R̃n(f) =
1
n

∑n
i=1maxB∞xi (ε)

l(f(x′i), yi).

In the next section, the paper considers the linear classi�cation case and �nds tight bounds for the
Rademacher complexity in the adversarial case.

3 Binary linear classi�er

In this section, we discuss the results on binary linear classi�ers. Let Y = {−1,+1} and let F ⊆ RX
be a set of linear functions of x ∈ X . More speci�cally, fw(x) = 〈w, x〉 and F consists of all such linear
functions with bounded lp norm, that is,

F = {fw(x) : ‖w‖p ≤W},

for some constant W . Since the linear classi�ers predict the sign of the linear functions fw(x), thus we
assume that l(fw(x), y) can be written as φ(y〈w, x〉) where φ(.) is a monotonically non-increasing and
Lφ-Lipschitz continuous function.

For the adversarial setting, we have,

l̃(fw(x), y) = max
x′∈B∞x

l(fw(x
′), y) = φ(minx′∈B∞x y〈w, x

′〉)

.
So, in a way, the above equation helps us convert the expression with adversarial loss and linear

function into a function with φ(.) and an adversarial function. Let us de�ne this function class, F̃ ⊆ RX .

F̃ = { min
x′∈B∞x

y〈w, x′〉 : ‖w‖p ≤W}. (2)
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From contraction inequality [12], we have RS(l̃F ) ≤ LφRS(F̃) using the Lipscitz continuity of the loss
function. Next, we present the main theorem of the paper.

Theorem 1. Let F̃ := {minx′∈B∞x (ε)y〈w, x′〉 : ‖w‖p ≤W}. Suppose that 1
p +

1
q = 1. Then there exists

a universal constant c ∈ (0, 1) such that

max {RS(F), cεW
d

1
q

√
n
} ≤ RS(F̃) ≤ RS(F) + εW

d
1
q

√
n

which implies

c(RS(F) + εW
d

1
q

√
n
) ≤ RS(F̃) ≤ RS(F) + εW

d
1
q

√
n

Proof. By the de�nition of Rademacher complexity and using Holder's inequality, we have,
RS(F) := 1

nEσ[sup‖w‖p≤W
∑n

i=1 σi〈w, xi〉] =
W
n Eσ[‖

∑n
i=1 σixi‖q]. Next, we will see that f̃w =

〈w, x〉 − ε‖w‖1. Note that, if y = 1, f̃w(x, y) = minx′∈B∞x 〈w, x
′〉, else if y = −1, f̃w(x, y) =

−maxx′∈B∞x 〈w, x
′〉. Thus, for y = 1, we have f̃w(x, y) = minx′∈B∞x

∑d
i=1wix

′
i =

∑d
i=1wi(xi −

εsgn(wi)) = 〈w, x〉 − ε‖w‖1. Similarly, when y = −1, we have f̃w(x, y) = −〈w, x〉 − ε‖w‖1. Hence, we
have f̃w = 〈w, x〉 − ε‖w‖1.

Thus, we have,

RS(F̃ ) =
1

n
Eσ[ sup
‖w‖p≤W

n∑
i=1

σi(yi〈w, xi〉 − ε‖w‖1)].

Now, de�ne u :=
∑n

i=1 σiyixi and v := ε
∑n

i=1 σi. Thus, we haveRS(F̃ ) =
1
nEσ[sup‖w‖p≤W

∑n
i=1〈w, u〉−

v‖w‖1]. Further, note that supremum of 〈w, u〉 − v‖w‖1 over w can only be achieved when sgn(wi) =
sgn(ui). using this and some algebraic manipulation gives,

RS(F̃ ) =
W

n
Eσ[‖u− vsgn(u)‖q]

=
W

n
Eσ[‖

n∑
i=1

σiyixi − (ε
n∑
i=1

σi)sgn(
n∑
i=1

σiyixi)‖q]

Using triangle inequality,

RS(F̃ ) ≤
W

n
Eσ[‖

n∑
i=1

σiyixi‖q]− ε
W

n
Eσ[‖

n∑
i=1

σi)sgn(

n∑
i=1

σiyixi)‖q]

= RS(F ) + εd
1
q
W

n
Eσ[|

n∑
i=1

σi)|]

≤ RS(F ) + εd
1
q
W√
n
,

using Khintchine's inequality. This gives the upper bound.
Next, we will �nd the lower bound. From previous equations and symmetry of Rademacher random

variables, we have,

RS(F̃ ) =
W

n
Eσ[‖

n∑
i=1

σiyixi + (ε

n∑
i=1

σi)sgn(

n∑
i=1

σiyixi)‖q]

=
W

2n
Eσ[‖

n∑
i=1

σiyixi − (ε

n∑
i=1

σi)sgn(

n∑
i=1

σiyixi)‖q] +
W

2n
Eσ[‖

n∑
i=1

σiyixi + (ε

n∑
i=1

σi)sgn(

n∑
i=1

σiyixi)‖q]

≥ W

n
Eσ[‖

n∑
i=1

σiyixi‖q] = RS(F ),
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where the last inequality was using triangle inequality. Thus, we have RS(F̃ ) ≥ RS(F ). Similarly, we
have,

RS(F̃ ) =
W

n
Eσ[‖(ε

n∑
i=1

σi)sgn(

n∑
i=1

σiyixi)‖q]

= εd
1
q
W

n
Eσ[|

n∑
i=1

σi|]

≤ cεd
1
q
W√
n
(for some constant c>0) ,

where the last inequality follows from Khintchine's inequality.

Next, we discuss the implications of the above theorem.
There are two interesting implications that one can draw from the above result. Firstly, this theorem

gives a tight bound to the adversarial Rademacher complexity upto a factor of a constant. Secondly,
and more importantly, this result shows the dependency of the adversarial Rademacher complexity
on the dimension d of the data, i.e. the adversarial Rademacher complexity can be larger than the

Rademacher complexity in natural setting by order of magnitude (O(d
1
q )). It is also interesting to note

that, for p = 1, q →∞, and hence d
1
q → 1, and hence the dependency on d vanishes indicating that l1

norm bound on the weight matrix might help in adversarial generalization. It is also worth noting that
there is a similar result in recent literature: Cullina et al. that shows that VC-dimension for halfspace
classi�ers in the presence of a sample-wise norm-constrained adversary is the same as the standard VC
dimension, i.e. = d+1. We do not compare the two results in details due to di�erence in assumptions
in the two work and further it is noted in the paper [1] that, the results of Cullina et. al. [13] does not
provide explanation to the empirical observation that adversarially robust generalization may be hard.

A similar result is also provided in [1] for multi-class linear classi�ers, which we will not discuss here
since the result provided is similar to the result for the binary case. However, it might be of interest
to note the implications of the result on multi-class classi�ers. The theorem for multi-class classi�ers
imply a similar dependence of Rademacher complexity on dimension of the data which goes away if
we take l1 norm bound on the weight matrix.

4 Neural Networks

In this section feedforward neural network with ReLU activation function is considered. Each of the
function in the hypothesis class corresponding to a feedforward neural network with L layers of neurons
can be represented using L weight matrices, W = (W1, . . . ,WL) as

fW (x) =WL(ρ(WL−1ρ(. . .W1(x)))),

where ρ is the ReLU function de�ned as ρ(t) = max t, 0. In this report, let us only consider the
binary classi�cation problem, hence we take Y = {−1,+1}, and assume that the loss function can be
written as

l(fW (x), y) = φ(yfW (x)),

where φ(·) : R 7→ [0, B] is a monotonically non-increasing and Lφ Lipschitz continuous function.
Since this is a binary classi�cation problem as in the previous section, we have the loss function as,

l̃(fW (x), y) = max
x′∈B∞x

l(fW (x′), y) = φ(minx′∈B∞x y〈W,x
′〉).

The paper considers the following function class:

F̃ = {(x, y) 7→ min
x′∈B∞x (ε)

yfW (x′) :W = (W1,W2, . . . ,WL),
L∏
h=1

‖Wh‖σ ≤ r} ⊆ RX×{−1,1},

where ‖ · ‖σ is the spectral norm of a matrix. Next, we discuss the theorem providing the bound on
the Rademacher complexity for feedforward neural networks.
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Theorem 2. Let F̃ := {(x, y) 7→ minx′∈B∞x (ε)yfW (x′) :W = (W1, . . . ,WL),
∏L
h=1 ‖Wh‖σ ≤ r}. Then,

there exists a universal constant c > 0 such that,

RS(F̃) ≥ cr(
1

n
‖X‖F + ε

√
d

n
).

where, d = maxh∈[L] dh

The proof of this theorem follows from two di�erent results, one of them being Thm. 1, and the
other one is from a paper by Bartlett et. al. [14]. We will �rst state the result from [14], followed by
the outline of the proof to Thm. 2.

Lemma 1. De�ne the function class,

F̂ = {x 7→ fW (x) :W = (W1,W2, . . . ,WL),

L∏
h=1

‖Wh‖σ ≤ r},

and F̂ ′ = {x 7→ 〈W,x〉 : ‖w‖2 ≤ r
2}. Then, we have F̂ ′ ⊆ F̂ , and thus there exists a universal constant

c > 0 such that,

RS(F̂) ≥
cr

n
‖X‖F

Thus, by de�ning F̃ ′ = {x 7→ minx′∈B∞x (ε)y〈W,x′〉 : ‖w‖2 ≤ r
2} ⊆ RX×{−1,+1}, we have F̃ ′ ⊆ F̃ .

Thus, by Lemma. 1 and Thm. 1 (using p = 2) we have,

RS(F̃ ) ≥ RS(F̃
′) ≥ cr( 1

n
‖X‖F + ε

√
d

n
).

That completes the proof. Note that, similar to the case of linear classi�ers, we have a dependency
on the dimension d of the data. However, the paper shows that using some results from optimization
[15]), one can design a surrogate loss function, for which this dependency on dimension can be get rid
of under l1 norm bound on the weight matrix for a single layered neural network with ReLU activation
function. One may refer to [1] for further details.

Next, we look at some experimental results supporting the theoretical �ndings.

5 Experiments

In this section we discuss the experimental results provided in [1] for linear classi�ers as well as neural
networks which essentially show the dependence of generalization error on the dimension of the data,
for all cases other than when weight matrix has a l1 norm bound.

5.1 Linear classi�ers

For linear classi�ers, the following two implications of Thm. 1 are validated: 1) imposing an l1 norm
bound on the weight matrix results in a generalization error that is independent of the dimension of
the data, 2) for any other norm constraint, there is a dimension dependence on the data.

For the �rst experiment, to show that imposing l1 norm on weight matrix results in no dependence
on the dimension of data, the following constrained empirical risk is minimized that essentially imposes
a loose l1 norm on the matrix.

min
W

1

n

n∑
i=1

max
x′i∈B∞x (ε)

l(fW (x′i), yi) + λ‖W‖1, (3)

where l(·) is the cross-entropy loss and fW (x) =Wx.
Fig. 1 shows that under l1 bounded norm, generalization error decreases as λ increase for any

perturbation validating the implication of Thm. 1.
Fig. 2 shows that for λ = 0, generalization error increases as the dimension of data, d, increases,

which also validates the result of Thm. 1.
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Figure 1: Generalization error decreases as λ increase for any given perturbation for linear classi�ers [1].

Figure 2: Generalization error increases as dimension of data, d, increases for any given perturbation
for linear classi�ers. Here λ = 0 [1].
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Figure 3: Adversarial generalization error vs regularization coe�cient λ in neural networks.

5.2 Neural Networks

Now, an experiment is discussed that is performed on neural networks [1] to validate that l1 norm can
reduce the adversarial generalization error. The paper considers a four-layer ReLU neural network,
where the �rst two layers are convolutional layers, whereas the last two layers are fully connected. The
paper uses PGD attack [10] adversarial training to minimize the l1 regularized objective function (3).

Fig. 3 shows the results of the experiment showing that as the regularization coe�cient increases,
the generalization error decreases for di�erent values of perturbation, hence, verifying the claims in
the paper.

6 Conclusion

The poor performance of state-of-the-art machine learning algorithms in the presence of adversaries
has raised serious questions about their use in several critical applications such as self-driving cars or
medical imaging. In the recent past, researchers have come up with several techniques to defend from
particular type of adversarial attacks, however, it has been found that it is not very di�cult to fool
those defense algorithms. This calls for a theoretical treatment of the problem. Hence this report
reviews a paper that �nds bounds on the Rademacher complexity of linear classi�ers as well as neural
networks, taking a �rst step towards understanding the two main problems in adversarial learning: 1)
optimizing the adversarial risk and 2) �nd the generalization error. The paper [1] shows that unless
there is an l1 norm bound on weight matrices for linear classi�er, the Rademacher complexity depends
on the dimension of the data, hence showing that l1 norm might help in reducing generalization error
under adversarial attacks. The paper also shows a similar dimension dependency when the classi�ers
are neural networks.
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