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Abstract

In this project, we will look at the problem of online optimization in the non-convex
setting, assuming that the player has access to an offline oracle. As we will see, it has
recently been proven that it is possible to achieve an O( 1√

T
) bound for the expected

average regret. The algorithm involves the well-known Follow the Perturbed Leader
algorithm, with a slightly strengthened oracle.

1 Introduction

Online optimization refers a the set of problems that can be modeled as follows. The nota-
tions follow the main reference [1], which is referred to as the default paper in throughout
this report.

• For some dimension d > 0, a decision set W ⊂ Rd. W is assumed to be bounded with
a diameter ≤ D (in the sense of `1-norm).

• Set of possible loss functions L ⊂ RW . Here we assume only that mathcalL is G-
Lipschitz for some G > 0, and that for all ` ∈ L, ‖`‖∞ ≤ B for some B > 0.

• We also make the assumption that D and G are polynomial in d.

• The game involves a player and an adversary, and it proceeds as follows:

– At time t = 1, the player chooses an arbitrary w1 ∈ W .

– At time t > 1, the player chooses wt according to losses up to t− 1.

– At time t, and after the player chooses wt the adversary chooses a function `t ∈ L,
and the player suffers the loss `t(wt).

– The game continues until we reach t = T .

• The goal is for the player to be able to minimize the expected average regret, which is
defined as the difference between the expected sum of losses from t = 1 to t = T , and
that of single best decision in hindsight. More precisely, regret is defined as

regret =
T∑
t=1

`t(wt)− inf
w∈W

T∑
t=1

`t(w). (1)
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• Sample Complexity is defined as min{T : E( regret
T

) < ε}, i.e. the minimum T to reach
an ε bound for the expected average regret.

As we saw in the course notes Theorem 11.1, assuming L and using gradient descent to
find wt results in a 1√

T
bound for the expected average regret.

We assume that the player has access to two oracles. First, a value oracle, where given
the input (w, `) ∈ W ×L, it outputs `(w), and second, an offline optimization oracle, where
given a sequence of of loss functions `1, · · · , `k and some vector σ ∈ Rd, it outputs

min
w∈W

[( k∑
i=1

`i(w)
)
− σ>w

]
. (2)

Note. the extra assumption of the oracle being able to perturb the minimization using
a linear noise is the extra assumption that this paper makes which makes it possible to
prove the 1√

T
bound for the expected average regret, by bounding the difference between

consecutive decisions of the player.
We measure the complexity in terms of oracle complexity, which is defined as the sum

of sample complexity, and sum of calls to the value oracle, and offline optimization oracle.

2 Main Algorithm

2.1 Follow the Leader

Follow the leader is a well-known and well-studied algorithm in online optimization. The
algorithm works as follows. At time t = 1, the player chooses an arbitrary w ∈ W , and for
t > 1, he chooses wt = arg minw∈W

[
`1(w) + · · ·+ `t−1(w)

]
, which is somewhat similar to the

ERM algorithm, in the sense that the player is trying to minimize the regret with respect to
the losses he has seen so far.

2.2 Follow the Regularized Leader

The standard Follow the Leader has instability issues which prevents the algorithm to reach
a sub-linear expected average regret (≤ o(T )). This can be seen with the example where
d = 2, `t(wt) = z>t wt, z1 = (0.5, 0), and for t > 1, zi alternates between (0, 1) and (1, 0). Now
with a wrong initiation w1, on can check that the algorithm always predicts corresponding
to the worst loss. In convex settings, this issue is dealt with by adding a regularizer function
to the objective, i.e.,

min
w∈W

[ t−1∑
i=1

`i(w)
]

+R(w) (3)

where R is the regularizer function. This will not work in our case, since `t is not assumed
to be convex.

To see this, consider the 1-D case where the loss function is of the form
(

max(wx, 0)−y
)2

,
where x ∈ [−1, 1] and y ∈ [0, 1]. Now let us assume that we have added a regularization
term η‖w‖2 to the objective function. Because of the max(wx, 0) term, it does not matter to
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the loss function how much netagive wx is (for instance wx = −ε is the same as wx = −1).
this means that if x’s are mostly distributed away from zero, the `2 regularization does not
motivate the algorithm to find solutions near to zero.

2.3 Follow the Perturbed Leader

In this variation, a linear random noise function is added to the objective function so as to
ensure stability. More specifically, the objective function in this case becomes

min
w∈W

[ t−1∑
i=1

`i(w)
]
− σ>w (4)

where σ ∈ Rd is the noise vector. We assume that coordinates of σ all have the i.i.d
exponential distribution with parameter η. The proposed algorithm of the paper is as follows:

Algorithm 1 Non-Convex Follow the Perturbed Leader
Parameter η > 0
for t = 0 to T do

Draw i.i.d random vector σt with distribution exp(η)d

Predict at time t:

wt ∈ arg min

[( t−1∑
i=1

`i(w)
)
− σ>t w

]
end for

which ∈ is used (instead of =) as there may be more than one minimizer for the objective
function of the oracle. The following is the main theorem of the paper.

Theorem 1. The Oracle Complexity of Algorithm 1 is poly(d, 1
ε
).

Note that the

3 Proof Sketch

We break down the proof in to several steps, and go through each separately.

3.1 Reduction to Oblivious Setting

The assumption here is that the adversary obesrves the player’s choice and then outputs a loss
function. This is referred to as the non-oblivious setting, as opposed to the oblivious setting,
where all the choices of the adversary are made before the game starts (i.e. `1, · · · , `T are
predetermined. According the Lemma 4.1 in [3], any bound on the expected average regret
of a game in the oblivious setting hold asymptotically true for the non-oblivious game.
Therefore, for our purpose, we can assume that the adversary is oblivious. this also allows
us to draw one single noise vector in the beginning and use it for every round (as opposed
to drawing a fresh sample each time).
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3.2 Reduce to bounding consecutive decisions

In [4], the authors prove the following lemma, which links the problem of bounding the
expected average regret to stability and initial error:

E(regretT ) ≤ E
[
R(w∗)−R(w1)

]
+

T∑
t=1

E
[
`t(wt)− `t(wt+1)

]
(5)

where R(w) is the regularizer in the Follow the Regularized Leader setting, and w∗ is the
best decision in hindsight, i.e. w∗ = arg min{

∑T
t=1 `t(w) : w ∈ W}.

In our case, R(w) = σ>w. Therefore we have

E|R(w)−R(w1)| = E|σ>(w∗ − w1)| ≤ E
[
‖σ‖∞‖w∗ − w1‖1

]
≤ η−1(log d+ 1)D,

where we have used the fact that the diamater of W is ≤ D, and that the expected value
of the maximum of d i.i.d exponential random variables with parameter η is bounded by
η−1(log d+ 1).

From the G-Lipschitz property of the functions, for the terms inside the sum, we have
|`t(wt)− `t(wt+1)| ≤ G‖wt −wt+1‖1. Therefore the only thing that remains is to bound two
consecutive decisions.

It is worthy to mention that it is possible to get a bound using the diameter of the
decision set W : ‖wt − wt+1‖1 ≤ D. This would yield

E((regret)T ) ≤ η−1(log d+ 1)D + TGD

which, when divided by D, is clearly not sub-linear. Therefore, we have to find a smarter
bound. Hopefully, we will be able to find a bound depending on η in both terms to be able
to choose an optimum value.

3.3 The Final Step

The final step is to bound ‖wt − wt+1‖1. The paper does this in two steps, once in 1-D and
once in the general d dimension case. The techniques used here are very similar, and we will
go over the proof of the 1-D case here.

The paper uses the following lemma to find a bound: Lemma 1. For any two functions
f1 and f2 : W → R, and vectors σ1 and σ2 ∈ Rd, let i(σi) ∈ arg min{fi(w) − σ}i . Then we
have

f(w1(σ1))− f(w2(σ2)) ≤ σ>(w1(σ1))− w2(σ2))

where f := f1 − f2 and σ = σ1 − σ2.
The proof is straightforward using the definitions.
This lemma is then used to prove that for every t and a fixed σ, wt(σ + 2G) (where G is

the Lipschitz constant of loss functions) cannot be smaller than wt+1(σ). The proof actually
works for any σ + αG where α > 1.

However, I think the authors over-complicated the proof a little. Here I give a simpler
proof. Note that

wt(σ + 2G) = arg min
w

t−1∑
i=1

`i(w)− σ>w − 2Gw
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and

wt+1(σ) = arg min
w

t∑
i=1

`i(w)− σ>w

so that the difference between the two objective functions is

function for t+ 1− function for t = lt(w) + 2G. (6)

Now starting at wt(σ + 2G) for the second minimization, adding any value will increase the
second term in 6 increases more than the first term could ever decrease. This is because the
loss function `t is G-Liptschitz. Therefore, the second minimization has to have a minimizer
≤ wt(σ + 2G), which proves the claim. We could make the exact same argument to deduce
that wt+1(σ + 2G) ≥ wt(σ). Now defining wmax(σ) = max(wt(σ), wt+1(σ)) (and similarly
wmin(σ), we have

E‖wt(σ)− wt+1(σ)‖ = Ewmax(σ)− Ewmin(σ).

We will now use our recent observation together with the properties of the exponential
distribution to find an appropriate bound. Consider wmin(σ). Let A be the event that
σ ≤ 2G. Then

Ewmin(σ) = E(wmin(σ)|A)P(A) + E(wmin(σ)|Ā)(1− P(A))

A direct calculation gives P(A) = 1− exp(−2ηG), so we have

Ewmin(σ) ≥ (1− exp(−2ηG))E(wmax(σ)) + E(wmin(σ)|Ā) exp(−2ηG)

But from the observation that we made, we have E(wmin(σ)|Ā) = E(wmin(σ)|σ > 2G) =
E(wmin(σ′ + 2G)) ≥ E(wmax(σ)). Rearranging and using exp(x) ≥ 1 + x gives

E‖wt(σ)− wt+1(σ)‖ ≤ 2ηDG. (7)

Combining this with what we had before gives

E((regret)T ) ≤ η−1(log d+ 1)D + 2η TGD.

To minimize this, we choose η such that the two terms are equal, and hence

E((regret)T )/T < 4D
√

log(d) + 1

√
G

T
(8)

proving the claim made in Theorem 1 in the 1-D case.
For the general case in d dimensions, the authors tried proving similar results for each

coordinate, and combine them in ‖ · ‖1. However, the above method is not applicable to
coordinates directly. I believe this is for d > 1, Rd is not a totally ordered set, and therefore
it is not possible to repeat the argument we made for 6 here. Instead, the authors make
use of the assumption that ‖`t‖∞ ≤ B, and essentially repeat the previous argument. This

results in a O
(
T

−1
3

)
bound for the expected average regret, a result which is slightly less

powerful than the one for the 1-D case.
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4 Improving the General Case

In a more recent paper [2], the authors have improved upon the result of [1] for the general
case. It is important to note that they use the exact same algorithm as Alrorithm 1, and
they improve the proof for the d dimensions. The general idea of separating the coordinates,
and defining wmax and wmin remains the same. However, unlike [1], they are able to leverage
the Lipschitz continuity of `t.

The key idea of the paper is condition the expected value of ‖wt − wt+1‖1 on the event
that the ith coordinate of wt−wt+1, i.e. |wt(i)−wt+1(i)|, is ≤ 10d‖wt−wt+1‖1, which means
separating coordinates where that one contributes to at least 1

10
of the norm.

More specifically, they prove that

E(regretT ) ≤ O
(
η−1Dd log(d) + ηd2DG2T

)
. (9)

For appropriate choice of η, we get expected average regret ≤ O(DG
√
d log d/T ), yielding

the 1/
√
T bound. They also provide an extra result assuming that the oracle has an ap-

proximation error α, meaning that f(w) for the w that the oracle returns is within the α
neighborhood of the minimum value of f , making the result more appealing for practical
purposes. They show that under this extra assumption, the bound in 9 changes to

E(regretT ) ≤ O
(
η−1Dd log(d) + ηd2DG2T + αT

)
, (10)

introducing a linear term α, meaning that if the oracle is inaccurate, the inaccuracy directly
translates to a constant error in the bound for expected average regret (which does not
vanish as T →∞).

5 Simulation

We consider the one dimensional example where `t(w) = sin(π(w − t)), and w ∈ W = [0, 1],
and t ∈ [0, 1]). This means that the possible domain for the sin function for different values
of t, is the set of intervals of length 1 that are a subset of [−1, 1], which clearly shows that lt
is generally not convex. However, we do have that sin(π(w − t)) is G-Lipschitz with G = π.
Therefore the setup of this example fits the online optimization problem we have considered
in previous sections. The proposed algorithm (Algorithm 1) is run for this problem, and the
results for average regret are compared to the theory bounds derived earlier.

As it can be seen, the overall behaviour in the simulation is similar to the behaviour of
the theoretical bound. This also demonstrates the claim in [2] that the O(

√
1/T ) bound is

optimal.
Figure 2 also shows the example where a random linear noise is added to the oracle,

causing fluctuations, but keeping the overall trend, as expected.
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Figure 1: Computer Simulation for a non-convex example, with perfect oracle

Figure 2: Computer Simulation for a non-convex example, with noisy oracle
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