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1 INTRODUCTION

Hornik (1991) showed that neural networks with a single hidden layer and arbitrary bounded and
non-constant activation function are capable to approximate any continuous functions on compact
subsets of Rn. Besides their great approximation capabilities, neural networks also show great gen-
eralization ability on many tasks. However, a classical opinion is that a too capable model would
usually generalize poorly. A natural question to ask is that what is the generalization bound of neural
networks?

Thus, we study three generalization bounds for neural networks hoping to obtain more insights
about their generalization abilities. The three bounds that will be shown later are derived from
VC-dimension, PAC-Bayesian theorem and covering number respectively. In this paper we would
introduce the first two bounds in more detail and briefly present the third bound. To compare the
three bounds more conveniently, throughout this paper we only consider a L-layer neural network
with ReLU activations.

2 GENERALIZATION BOUND DERIVED FROM VC-DIMENSION

From the fundamental theorem of concept learning, which gives a generalization bound based on
VC-dimension, one intuitive way to obtain a bound for neural networks is to find the VC-dimension
of the function class computed by them. Thus, in this section we first introduce some preliminar-
ies that we will use later. Then we present a generalization bound for neural networks based on
VC-dimension due to Bartlett et al. (2017b), which proved a nearly-tight VC-dimension bound for
networks with ReLU activations.

2.1 PRELIMINARIES

Definition 2.1. The growth function of F : X 7→ {−1, 1} is defined as

Sm(F) := max
x1,...,xm∈X

|{(f(x1), ..., f(xm)) : f ∈ F}|.

The largest m such that Sm(F) = 2m is defined as the VC-dimension of F .
Theorem 2.1. Let f ∈ F : X 7→ {−1, 1} be the output of a concept learning algorithm, L be
the expected risk, L̂ be the empirical risk, n be the number of training samples and V (F) be the
VC-dimension of a function classF . From the single version of the fundamental theorem of concept
learning we know that

L(f) ≤ L̂(f) + Õ

(√
V (F)

n

)
,

where we omit the term from McDiarmid inequality for simplicity.

Proof. The proof is based on the mismatched minimization lemma (Lemma 5.1) , the Rademacher
averages (Theorem 6.1.) and the Sauer-Shelah lemma (Lemma 7.2) introduced in class. See lecture
notes for the detailed proof.

2.2 GENERALIZATION BOUND

Lemma 2.2. Consider a neural network with ReLU activations, L layers and W parameters. Let
F denote all real-valued functions computed by the network. Let hi denote the number of units at
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the ith layer, U denote the total number of computation units and Wi denote the total number of
parameters in all the layers up to layer i (i.e., in layers 1,2,...,i). Then, the growth function of F is
bounded by

SV (F)(sgn(F)) ≤ 2L

(
2eV (F)

∑L
i=1 ihi∑

Wi

)∑
Wi

.

Proof. The proof is based on a bound on the growth function of a polynomially parameterized
function class due to Goldberg & Jerrum (1995). See [Bartlett et al. (2017b)] for the detailed proof
of this lemma.

Lemma 2.3. Suppose that 2v ≤ (vr/w)w for some r ≥ 16 and v ≥ w ≥ 0. Then, v ≤
w log2(2r log2 r).

Proof. It can be shown that if v > w log2(2r log2 r) for any v ≥ w ≥ 0 and some r ≥ 16, then
2v > (vr/w)w. Thus, if 2v ≤ (vr/w)w under the specified conditions, v ≤ w log2(2r log2 r).

Theorem 2.4. Consider a neural network with ReLU activations, L layers and W parameters. Let
F denote all real-valued functions computed by the network. Then, there exists a constant C such
that

V(F) ≤ C ·WL logW.

Proof. By the definition of growth function of VC-dimension,

2V (F) = SV (F)(sgn(F)).

According to Lemma 2.2. and the fact that L ≤
∑
Wi and

∑
hi = U, yield

2V (F) = SV (F)(sgn(F))

≤ 2L

(
2eV (F)

∑L
i=1 ihi∑

Wi

)∑
Wi

(Lemma 2.2.)

≤
(

4eV (F)L
∑
hi∑

Wi

)∑
Wi

(L ≤
∑

Wi)

≤
(
V (F) · 4eLU∑

Wi

)∑
Wi

(
∑

hi = U).

Since LU ≥ 2 is usually the case for neural networks, this implies 4eLU ≥ 16. Hence Lemma 2.3.
gives

V (F) ≤
∑

Wi log2(8eLU log2 4eLU)

= L̄W log2(8eLU log2 4eLU)

= O(L̄W logU) (1)
= O(LW logW ),

where L̄ := 1
W

∑L
i=1Wi and is called effective depth or average depth.

Remark. By the definition of L̄, it is always between 1 and L and it can capture how the pa-
rameters are distributed in the network. For example, consider two networks both with three
hidden layers. The numbers of hidden units of the first network are 1, 1 and 100 respectively,
then L̄1 = 1+(1+1)+(1+1+100)

102 ≈ 1.03; The numbers of hidden units of the second network
are 100, 1 and 1 respectively, then L̄2 = 100+(100+1)+(100+1+1)

102 ≈ 2.97. This shows that L̄ is
close to 1 if parameters are concentrated near the output. Based on this observation and Eq. (1),
V (F) ≤ O(L̄W logU), it implies that in a neural network nodes closer to the input have a larger
effect in increasing the VC-dimension.
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Theorem 2.5. Consider a neural network with ReLU activations, L layers andW parameters. Com-
bine Theorem 2.1. and 2.4., yielding

L(f) ≤ L̂(f) + Õ

(√
WL

n

)
. (2)

Thus, we have obtained a generalization bound for neural networks based on VC-dimension. How-
ever, it depends on the number parameters and the number of layers in the network. This makes
it not that useful since today many deep neural networks are over-parameterized, that is, W � n,
which means the right hand side of Eq. (2) would be greater than 1. In other word, VC-dimension
of neural networks can give us some insights about the approximation ability of them, but we prob-
ably need a bound that does not depend on the number of parameters. Therefore, we introduce two
bounds that do not depend on the number of parameters in next two sections.

3 GENERALIZATION BOUND DERIVED FROM PAC-BAYESIAN FRAMEWORK

In this section, we introduce a generalization bound that depends on the product of the spectral
norm of the layers and the Frobenius norm of the weights of neural networks in a PAC-Bayesian
framework from Neyshabur et al. (2017).

3.1 PRELIMINARIES

We first introduce the definitions and notations of three types of norms that will be used later: (1)
Spectral norm is a matrix norm induced by the L2 norm. For matrix A and vector x, the spectral
norm is ‖A‖2 and ‖A‖2 = max|x|2=1 |Ax|2. This norm is heavily used in numerical analysis; it
can measure how large the matrix can “stretch” a vector and is related to the condition number of a
matrix. (2) Frobenius norm of matrix A is defined as ‖A‖F = (

∑
i

∑
j a

2
ij)

1/2. (3) Vector p-norm
is denoted by | · |p.

The following is the notations that will be used to describe a neural network for both section 3
and section 4. Let XB,n = {x ∈ Rn|

∑n
i=1 x

2
i ≤ B2} and fw(x) : XB,n 7→ Rk be the

function computed by a L layer neural network for a k-class classification task with parameters
w = vec({Wi}Li=1), fw(x) = WLφ(WL−1φ(...φ(W1x))), where Wi is the weight matrix of layer
i and φ is the ReLU activation function. Let f iw(x) denote the output of layer i before activation and
h be an upper bound on the number of output units in each layer. Note that Wi here differs from the
Wi defined in section 2.

Definition 3.1. For any distributionD and margin γ > 0, define the expected margin loss as follows:

Lγ(fw) = P(x,y)∼D

[
fw(x)[y] ≤ γ + max

j 6=y
fw(x)[j]

]
,

where vec[i] returns the ith element in the vector. Let L̂γ(fw) be the empirical estimate of the
expected margin loss. Then, L0(fw) is the expected risk and L̂0(fw) is the empirical risk.

Definition 3.2. Sharpness is a generalization measure that corresponds to robustness to adversarial
perturbations on the parameter space of neural networks. One way to define it is that

ζ(w) = max
v

L̂0(fw+v)− L̂0(fw).

3.2 PAC-BAYESIAN FRAMEWORK

PAC-Bayesian framework was proposed to prove generalization bounds without the use of VC-
dimension by providing an informative prior distribution on the parameters. Due to the work done
by McAllester (2003), we have the following PAC-Bayesian theorem.

Theorem 3.1. Let P be a prior distribution on (the parameters of) the function class F . Let fQ ∈ F
be a predictor that is parameterized by Q, where Q is a random variable and its distribution is also
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on F . The two-sided PAC-Bayesian theorem states that for any Q and a fixed P, with probability at
least 1− δ that

DKL

(
EQ[L̂0(fQ)] ||EQ[L0(fQ)]

)
≤
DKL(Q||P ) + ln 2n

δ

n− 1
, (3)

where n denotes the sample size. This theorem implies that if DKL(Q||P ) is small, then
EQ[L̂0(fQ)] is near EQ[L0(fQ)]. A one-sided version states that for any Q and a fixed P, with
probability at least 1− δ that

EQ[L0(fQ)] ≤ sup

{
ε : DKL(EQ[L̂0(fQ)] || ε) ≤

DKL(Q||P ) + ln n
δ

n− 1

}
. (4)

Proof. See [McAllester (2003)] for the proof.

Corollary 3.1.1. With the same setting in Theorem 3.1., for any Q and a fixed P, with probability
at least 1− δ that

EQ[L0(fQ)] ≤ EQ[L̂0(fQ)] +

√
2EQ[L̂0(fQ)](DKL(Q||P ) + ln n

δ )

n− 1
+

2(DKL(Q||P ) + ln n
δ )

n− 1
.

(5)

Proof. For q > p we have DKL(p||q) ≥ (q − p)2/(2q), which implies if DKL(p||q) ≤ x then
q ≤ p+

√
2px+ 2x. Based on this, Eq. (5) is directly from Eq. (4).

Since the Q in Theorem 3.1. and Corollary 3.1.1. is a random variable, we can relate the PAC-
Bayesian framework to the sharpness of neural networks by replacing it with the addition of a fixed
w and a random variable u. Then we have the following theorem mentioned in [Neyshabur et al.
(2017)].

Theorem 3.2. Let fw be any predictor learned from the training data and parametrized by fixed w.
Consider the distribution over predictors of the form fw+u, where u is a random variable whose
distribution may also depend on the training data. P is the prior distribution on the parameters that
is independent of the training data. From the PAC-Bayesian Theorem 3.1., with probability at least
1− δ, we have

Eu[L0(fw+u)] ≤ Eu[L̂0(fw+u)] + 2

√
2(DKL(w + u||P ) + ln 2n

δ )

n− 1
.

Proof. This is directly from Corollary 3.1.1. and is a weaker form of it.

To turn the bound for the perturbed predictor fw+u in Theorem 3.2., to a bound that works for the
unperturbed predictor fw, we need the following lemma.

Lemma 3.3. Let fw(x) : X 7→ Rk be any predictor with fixed parameters w, and P be any dis-
tribution on the parameters that is independent of the training data. Then, for any γ, δ > 0, with
probability at least 1 − δ over the training set of size n, for any w, and any random perturbation u
that satisfies Pu[maxx∈X |fw+u(x)− fw(x)|∞ < γ

4 ] ≥ 1
2 , we have

L0(fw) ≤ L̂γ(fw) + 4

√
DKL(w + u||P ) + ln 6n

δ

n− 1
.

Proof. See [Neyshabur et al. (2017)] for the proof.
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3.3 GENERALIZATION BOUND

Neyshabur et al. (2017) proved a generalization bound for neural networks in a PAC-Bayesian frame-
work that does not depend on the number of parameters in the network. The key of their proof is
to apply Lemma 3.3. in the PAC-Bayesian framework. They first bound the KL divergence in the
lemma by pre-defining the distribution of u and P . Then, they choose proper parameters for the two
distributions u and P using the perturbation bound Lemma 3.4. such that it can satisfy the condition
that Pu[maxx∈X |fw+u(x)−fw(x)|∞ < γ

4 ] ≥ 1
2 and therefore they can apply Lemma 3.3. to obtain

a generalization bound for neural networks.

Thus, next we present a perturbation bound that bounds the change in the output of the network when
the weights are perturbed, thereby bounds the sharpness of the network, in terms of the spectral norm
of the layers. Then we use the perturbation bound Lemma 3.4. as well as the Lemma 3.3. to derive
a generalization bound for neural networks.

Lemma 3.4. For any B,L > 0, let fw : XB,n 7→ Rk be a L-layer neural network with ReLU
activations. Then for any w, and x ∈ XB,n, and any perturbation u = vec({Ui})Li=1 such that
‖Ui‖2 ≤ 1

L‖Wi‖2, the change in the output of the network can be bounded as follows:

|fw+u(x)− fw(x)|2 ≤ eB

(
L∏
i=1

‖Wi‖2
L∑
i=1

‖Ui‖2
‖Wi‖2

)
.

Proof. Let’s define ∆i = |f iw+u(x) − f iw(x)|2 for i from 0 to L, where f iw denotes the output of
layer i before activation given weights w. Thus ∆0 is the perturbation for the input x, which is zero
since perturbation on weights will not influence inputs, and ∆L is the perturbation of the output of
the neural networks; in other words, ∆L = |fLw+u(x)− fLw (x)|2 = |fw+u(x)− fw(x)|2. Then, by
induction on ∆i, we obtain the upper bound of ∆L.

With Lemma 3.3. and Lemma 3.4. we can now present the following generalization bound for
neural networks based on PAC-Bayesian theorem.

Theorem 3.5. For any B,L, h > 0, let fw : XB,n 7→ Rk be a L-layer neural network with ReLU
activations. Then, for any δ, γ > 0, with probability ≥ 1− δ over a training set of size n, for any w,
we have

L0(fw) ≤ L̂γ(fw) +O

B2L2h ln(Lh)
∏L
i=1 ‖Wi‖22

∑L
i=1

‖Wi‖2F
‖Wi‖22

+ ln Ln
δ

γ2n

 .

Proof. Now, we first find a bound for the KL divergence in Lemma 3.3. by choosing the distribution
of the prior P to beN (0, σ2I) and u ∼ N (0, σ2I) as well, where the value of σ will be determined
later. Based on the fact that the KL-divergence between two Gaussian distributions with mean µ1, µ2

and same variance σ2 is (µ1−µ2)
2

2σ2 and w is fixed, we get the following bound: DKL(w + u||P ) ≤
|w|2
2σ2 . Thus, if we can find a proper value for σ, then we can plugin it in the Lemma 3.3. and get a
generalization bound for neural networks.

It is obvious that to apply Lemma 3.3., the σ should be chosen in a way that the condition
Pu[maxx∈X |fw+u(x) − fw(x)|∞ < γ

4 ] ≥ 1
2 will be satisfied. Hence, next we choose the value of

σ based on Lemma 3.4.

Let’s assume the spectral norm is equal across layers, i.e. for any layer i, ‖Wi‖2 = β. This can
be assumed without loss of generality since using ReLU as the activation function, the output of a
network will not change with weights to be normalized or not and therefore we can assume w.l.o.g.
the norms are all equal to β. However, β here is related to the learned w of the predictor and σ is
the parameter of the prior distributions. Since the prior cannot depend on the learned predictor, we
will set σ based on an approximation β̃, which satisfies that |β − β̃| ≤ 1

Lβ, and hence 1
eβ

L−1 ≤
β̃L−1 ≤ eβL−1.
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Then, according to Lemma 3.4.,

max
x∈XB,n

|fw+u(x)− fw(x)|2 ≤ eBβL
∑
i

‖Ui‖2
β

. (6)

To relate this bound to σ, note that u ∼ N (0, σ2I) and we get the following bound on ‖Ui‖2 due to
Tropp (2012):

PUi∼N (0,σ2I)[‖Ui‖2 > t] ≤ 2he−t
2/2hσ2

.

Then, we take the union bound over all layers to get an upper bound of
∑
i ‖Ui‖2. To satisfy the

condition that Pu[maxx∈X |fw+u(x) − fw(x)|∞ < γ
4 ] ≥ 1

2 , we set the probability of the union
bound to be at least 1

2 , then we get the following:
∑
i ‖Ui‖2 ≤ σ

√
2h ln(4Lh) w.p. ≥ 1

2 .

Thus, based on this bound and Eq. (6), we have that with probability at least 1
2 ,

max
x∈XB,n

|fw+u(x)− fw(x)|2 ≤ eBβL−1
∑
i

‖Ui‖2

≤ eBβL−1σ
√

2h ln(4Lh)

≤ e2LBβ̃L−1σ
√

2h ln(4Lh)

≤ γ

4
.

Now, we can choose σ = γ

42LBβ̃L−1
√
h ln(4hL)

and we get the upper bound of the KL divergence

DKL(w + u||P ) ≤ |w|
2

2σ2
=

422L2B2β̃2L−2h ln(4hL)

2γ2

L∑
i=1

‖Wi‖2F

≤ O

(
B2L2h ln(Lh)

∏L
i=1 ‖Wi‖22
γ2

L∑
i=1

‖Wi‖2F
‖Wi‖22

)
.

Finally, we plugin this in Lemma 3.3. and complete the proof.

4 GENERALIZATION BOUND DERIVED FROM COVERING NUMBER

In this section, we briefly introduce a generalization bound that is even tighter than the bound in
section 3 due to Bartlett et al. (2017a). This bound is proved by a complex covering number argu-
ment, but it is strictly better than the bound from the PAC-Bayesian framework and it improves over
existing results.

We state the following theorem with the same setting and notations used in section 3 except that we
denote ‖A‖2,1 as the sum of the Euclidean norms of the columns of the matrix, that is, ‖A‖2,1 =∑
j

(∑
i a

2
i,j

)1/2
.

Theorem 4.1. For any B,L, h > 0, let fw : XB,n 7→ Rk be a L-layer neural network with ReLU
activations. Then, for any δ, γ > 0, with probability ≥ 1− δ over a training set of size n, for any w,
we have

L0(fw) ≤ L̂γ(fw) + Õ

B2 ln(h)
∏L
i=1 ‖Wi‖22

(∑L
i=1(

‖Wi‖2,1
‖Wi‖2 )2/3

)3/2
γn

+

√
ln(1/δ)

n

 .

5 DISCUSSION AND CONCLUSION

Now, we have presented three generalization bounds for neural networks. The first bound is derived
from VC-dimension and it depends on the number of parameters in the network, which makes
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the bound not that useful since many deep neural networks are over-parameterized. However, one
intermediate result from the proof of the VC-dimension of neural networks shows that nodes in the
network contribute unevenly in increasing the VC-dimension of the network and nodes closer to
the input would have a larger effect. Since the bound for the VC-dimension is nearly-tight, this
might give us a insight that increasing the number of nodes of the early layers would increase the
approximation ability of neural networks more significantly.

To obtain more meaningful bounds that do not depend on the number of parameters in the net-
work, we then introduced two spectrally-normalized margin bounds. We observe that the term∑L
i=1

‖Wi‖2F
‖Wi‖22

in the second bound and the term (
∑L
i=1(

‖Wi‖2,1
‖Wi‖2 )2/3)3/2 in the third bound may sug-

gest that regularization on L2 norm of weights might have limited influence on generalization since
these two terms are relatively small compared with the product of the spectral norms. In addition,
the factor O( 1

γ2B
2
∏L
i=1 ‖Wi‖22) appears in both bounds. It may suggest that (1) data normaliza-

tion could help generalization; (2) the product of the spectral norms of weight matrices could play
an important role for generalization. This might indicate that although usually one would do L1 or
L2 regularization when training neural networks, what we really need might be a regularization on
the spectral norm of the weight matrices. Thus, it might be worth trying to develop some regulariza-
tion technique based on the spectral norm to see if there will be improvements on the generalization
ability of networks.

In conclusion, these bounds give us more insights about the neural networks and they help us to
understand and interpret how neural networks work. Although these bounds cannot tell us everything
about neural networks, we now at least know a little aspects about them instead of viewing them
completely as black boxes. Maybe in future we could have a even tighter bound and then we might
be able to better understand why neural networks are so powerful.
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