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1. Introduction

Classical Adaboost algorithm and its multiclass generalizations (Mukherjee and Schapire
(2013)) have been successfully applied to problems such as object detection (Viola and Jones
(2002)), name entity recognition and text category classification (Schapire and Singer). The
algorithm seeks to build a strong classifier from weak ones by greedily computing a weighted
votes of the set of weak classifiers. While enjoying theoretical guarantees on training and
generalization, the algorithm is, however, not online and can be time consuming as it
requires passing through all training examples at each iteration.

On the other hand, the multi-armed bandit (MAB) algorithm has been successful in an
online, partially observed settings, e.g., crowdsourcing (Zhou et al. (2014)), game playing
and anomaly detection. This report presents the recent attempts (Jung et al. (2017); Zhang
et al. (2019); Fekete and Keg̈l (2009)) to incorporate bandit-based sampling to feature
selection, expert selection and cost matrix estimation of online Adaboost algorithm. The
report is organized as follows: Section two formulates the problem of MAB and Adaboost,
and section three will analyze algorithms for MAB and the general framework for the
multiclass Adaboost problem proposed by Mukherjee and Schapire (2013); section four will
discuss the application of MAB to Adaboost; Section five will be conclusion and future
works.

2. Problem Formulation

For the MAB problem, suppose there is a bandit with K arm and each arm will generate
a random reward with mean µi, i ∈ [K], where [N ] stands for integer from 1 to N . At
each time step t, a player pulls one arm it ∈ [K] and receives a reward Rit,t. The goal of

the player is to minimize her regret : R̄T ((it)) := E
[
maxi∈[K]

∑T
t=1Ri,t −

∑T
t=1Rit,t

]
. In

addition, the player may want to find the best arm as quickly as possible in T rounds, and
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the problem can be formulated as:

minT = min
K∑
i=1

Ti,

s.t. P
{
µiT ≥ max

i
µi − ε

}
≥ 1− δ,

where Ti is the number of times when arm i is pulled.
The problem can be formulated alternatively in an adversarial setting, where an adver-

sary with control over the bandit machines chooses a reward at each time for the arm pulled
by the player to maximize the regret, while the learner is trying to minimize the regret:
RaT ((it)) := min(it) maxi

∑T
t=1 ri,t −

∑T
t=1 rit,t.

On the other hand, the multi-class boosting problem seeks to build a strong multi-class
classifier from a set of weak multi-lass classifiers hi ∈ H, i = 1, . . . , [N ]. The problem of
feature selection for Adaboost can be formulated as an exploration problem with bandit
feedback. This setting assumes that Ri,t is time-invariant, i.e., θi,t =: θi,∀t. As a result,
one optimal policy will trivially be choosing the best arm, or in general, best K arms with
the highest expected reward û = ft(H) after T trials for some T . At each iteration t, an
adversary chooses data xt, and the strong classifier outputs a prediction ỹt and receives a
zero-one loss as feedback: Xi,t = 1[ỹt = yt], where yt is the true label at time t.

3. Algorithms and Analysis

3.1 Upper bounds on the performance of optimal multi-arm bandit algorithm

Following Katselis, an insightful way to rewrite the regret function is as follows:

RT ((it)) = E

[
T∑
t=1

Rit,t − inf
i
Ri,t

]
= E

[
K∑
i=1

(Ri,t −Ri∗,t)Ti

]

=
K∑
i=1

(µi,t − µi∗,t)E [Ti] =
K∑
i=1

∆iE [Ti] . (1)

As a result, upper bounding the regret amounts to upper bound the expected sampling
time for arm i, E [Ti].

Theorem 1 Let αt > 2, then

RT ((iUCBt )) ≤

 ∑
i:∆i>0

2α

∆i

 log T +
α

α− 2

∑
i:∆i>0

∆i. (2)

P

{
µ̂i < µi +

√
2α log t

2Ti,t−1

∣∣∣∣∣Ti,t−1

}
≥ 1− δ.

Let δ = 1
tα gives the expression for UCB.
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Proof Let β := d2α log T
∆2
i
e. It can be proved by contradiction that in order for arm i 6= i∗

to be chosen at time t, at least one of the following three events must occur: 1) µ̂i ≥

µi +

√
α log t
2T 2
i,t

; 2)µ̂i∗ ≤ µi∗
√

α log t
2T 2
i,t

; 3) Ti,t ≤ β. Therefore, the expected exploration time for

arm i can be upper bounded as follows:

E [Ti] = E

[
T∑
t=1

1[it = i]

]

=

T∑
t=1

1[it = i, Ti ≤ β] + 1[it = i, Ti ≥ β]

≤ β +

T∑
t=β+1

E

[
1[µ̂i,t ≥ mui +

√
α log t

2T 2
i,t

, Ti,t ≥ β] + 1[µ̂i∗,t ≤ µi∗
√
α log t

22
i

, Ti,t ≥ β]

]

≤ β +
T∑

t=β+1

P

{
µ̂i,t ≥ mui +

√
α log t

2T 2
i,t

}
+ P

{
µ̂i∗,t ≤ µi∗ −

√
α log t

2T 2
i,t

}

= β +
T∑

t=β+1

∑
t′=β+1

tP

{
µ̂i,t ≥ mui +

√
α log t

2t′2
, Ti,t = t′

}
+ P

{
µ̂i∗,t ≤ µi∗ −

√
α log t

2t′2
, Ti,t = t′

}

≤ β +
T∑

t=β+1

t× 1

tα
+ t · 1

tα
≤ β +

∫ ∞
1

2

tα−1
≤ 2α log T

∆2
i

+ 1 +
2

α− 2
≤ 2α log T

∆2
i

+
α

α− 2
.

Plug Eq. (3) into Eq. (1) leads to Eq. (2).

Remark 2 1. Plug back δ = 1
tα , ε = mini

1
δ2i

, we obtain E [Ti] ≤
2 log 1

δ
ε2

+ 1
1−δ1/α =

O( 1
ε2

log 1
δ ) and E [T ] ≤ O(K

ε2
log 1

δ ). As will be shown later, this is also the opti-
mal lower bound for the stochastic MAB, indicating that UCB is in fact the optimal
algorithm.

2. This proof poses no restriction on the reward distribution of the arms other than
boundedness. Further, it can be easily extended to subgaussian reward distributions
such as the Gaussian distribution.

3.2 Lower bounds on the performance of optimal multi-arm bandit algorithm

Intuitively, the performance of an (ε, δ)-optimal best-arm identifier is limited by the closest
arm outside the ε ball centered around the best arm. Consider the following scenario:
Suppose one arm has probability δ, It is useful to consider a special case when there are
two arms with reward distribution as Bernoulli random variables p1 = p0 + ε. In order
to be (ε, δ)-optimal, the arm needs to be the optimal hypothesis tester for the following
hypotheses:

H0 : µ0 = p1, µ1 = p0

H1 : µ0 = p0, µ1 = p1.
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From Chapter 12 of the textbook, we know that the optimal error can be lower-bounded via

the Bhattacharyya coefficient: p∗e,T ≥
(1−ε)T

4 = δ ⇒ T =
log( 1

4δ
)

log 1

p20+p0ε

. For K − arm problem,

the best-arm identification problem is a sequential hypothesis testing problem with at most

K trial and therefore E [T ] ≥ K log( 1
4δ

)

log 1

p20+p0ε

= O(K log( 1
4δ )). With a more careful analysis, it

turns out this bound can be made tighter to match the upper bound in the previous section,
as shown by the following theorem by Mannor and Tsitsiklis (2004).

Theorem 3 Fix some p ∈ (0, 1
2). There exists a positive constant δ0, c1 that depends only

on p, such that for every ε ∈ (0, 1
2), δ ∈ (0, δ0), p ∈ [0, 1

2 ]n, and for every (ε, δ)-optimal policy,
we have:

EpT ≥ c1

 |M(p, ε)− 1|+

ε2
+

∑
l∈N(p,ε)

1

(p∗ − pl)2

 log
1

8δ
,

where p∗ = maxi pi,

M(p, ε) =

{
l : pl > p ∗ −ε and pl > p ,and p≥

ε

1 +
√

1/2

}

N(p, ε) =

{
l : pl ≤ p ∗ −ε, and pl > p, and p≥

ε

1 +
√

1/2

}
.

Proof The proof is outlined as follows: suppose iT is chosen according to some (ε, δ)-
optimal policy. Without loss of generality, let p1 = p∗. Let El and Pl be the expectation
and probability under hypothesis l respectively. By definition, the policy should make the
asymptotically optimal decision among the following K + 1 hypotheses:

H0 : µ1 = p1, µl = pl, l 6= 1 (3)

Hl : µl = p1 + ε, µi = pi, i 6= l. (4)

Let Bl = {iT = l}, then this is the error event when any Hi, i 6= l is true and a correct
event when Hl is true. The key idea is to observe that P0(Bc

l ) is large by the optimality
of the policy which also makes Pl(B

c
l ) = Pl(error) large, leading to contradiction. To

that end, the proof then proceeds to lower bound the event S = Al ∩ Bc
l ∩ C, where

Al = {Tl ≤ 4t∗l }, Cl = {max1≤t≤4t∗l
|µ̂ltTl−µlT1| <

√
t∗l log(1/(8δ))}. Clearly Pl(S) provides

a lower bound for Pl(B
c
l ). To bound Pl(S), use the standard change-of-measure argument:

Pl(S) = E1[1[w ∈ Al ∩ Bc
l ∩ C]] = E0[ Ll(w)

L0(w)1[w ∈ Al ∩ Bc
l ∩ C]], where W is the past

observations {Xit′ ,t
′}t′<t at time t. This can be bounded in the following steps:

1. Lower bound Ll(w)
L0(w) ≥ C(pl) using the properties of S, namely, the exploration time is

no too long and the estimated reward for arm l is sufficiently close to its mean;

2. Lower bound P0(S) ≥ 1−P0(Acl )−P0(Bl)−P0(Ccl ) by lower bound P0(A), P0(B), P0(C)
as follows: P0(Ac) can be upper bounded by Markov inequality; P0(B) is lower
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bounded by the optimality of the policy; P0(Cc) can be upper bounded by notic-
ing that the deviation of total reward sequence from its mean is Martingale and
Kolmogorov inequality can be used to bound the maximum of the sequence at any
time in terms of the variance of the reward each time which is pl(1 − pl) ≤ 1/4 and
the deviation. By properly choosing the constants, we can bound P0(S) ≥ 1/8;

3. Combined the two steps, Pl(S) ≥ C(pl)/8 > ε, leading to contradiction;

4. Use union bound and that for each arm, Tl ≥ O( 1
ε2

log 1
δ ), we have T ≥ O(K

ε2
log 1

δ ),
thus proving the theorem.

3.3 Multiclass Adaboost

Adaboost algorithm enjoys nice empirical risk reduction and generalization ability. This is
illustrated by the upper bound on generalization loss based on surrogate loss function and
Radamacher complexity of a absolute convex hull Hajek and Raginsky (2019).

A more general view of the boosting algorithm proposed by Mukherjee and Schapire
(2013) takes several attributes of the original algorithm into accounts:

1. The loss function is entries of a sequence cost matrices Ct ∈ RK×K , t ∈ 1, · · · , T ,
whose columns satisfies that, if the true labels are {yt}Tt=1, Ct(yt) ∈ Ceor(y), where
Ceor(y) = {c : c(y) ≤ c(l)}. Note that as a result the set of cost vectors is convex.

2. The base learners perform better than random guessing, called the weak-learning
condition (WLC): ∑

t

wtC(i, ŷt) ≥
∑
t

wt〈C(i), uγy〉, (5)

where uγy is called a γ-over-random distribution: [1−γ
k + γ1[y = 1], 1−γ

k + γ1[y =

2], · · · , 1−γ
k + [γ1[y = K]. The loss C(i) ∈ Ceor1 (y) = {c : c(y) ≤ c(l)}, ‖c‖1 = 1} ∈

Ceor(y). In other word,

Applicable to both binary and multiclass setting, we can view the boosting as a online
adversarial game: At each round i, the booster tries to come up with a cost matrix Ci ∈
RK×K to penalize the mistakes the base learner makes while the base learner tries to
minimize the loss by finding the best base learner in H. Therefore, the general problem
problem of boosting becomes:

max
C1∈Ceor

min
h1∈H,tr(C,Uγ−1h1 )≥0

· · · max
C1∈Ceor

min
hN∈H,tr(C,Uγ−1hN )≥0

1

T

T∑
t=1

L(sN (xt), yt)

This problem can be hard to optimize, but if we restrict the type of probability dis-
tribution to the “edge-over-random” distribution [1−γ

k + γ, 1−γ
k , · · · , 1−γ

k ], the problem can
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break down into single steps:

φyi (s) = max
c∈Ceor

min
p∈∆γ

{El∼p[φyi−1(s + el)] : 〈c, p〉 ≤ 〈c, uγ〉} (6)

= El∼uγy [φyi−1(s + el)]. (7)

The last equality follows from the minimax principle (the objective is linear in p and C on
the convex compact set on p and convex set on C). The function φ is called a potential
function by Mukherjee and Schapire (2013). It is easy to check by induction that if φ0(x)
is a cost function, so will be φi(x). And the y-th column of the cost matrix is related to the
potential function by Cit(y) = [φy(si−1

t + e1) · · ·φy(si−1
t + eK)]>

Further, as noted by Jung et al. (2017), this expression is amenable to online setting and
a general result in online learning is applicable: For the problem on (X,P,H, `), if function
class H has finite Littlestone dimension d, with probability 1 − δ, the regret RT ((ht)) =
O(
√
Td lnT +

√
T ). The weak learning condition for the base learners can be viewed as a

special case with empirical risk L(ht) =
∑T

t=1 wtCt[yt, ht(xt)].
The intuitive interpretation of the potential function can be seen through the following

two examples.

Example 1 Let φyi (s) = P {maxl 6=y s(l) +Nl ≥ s(y) +Nr}, where we define Ny to be the
number of labels classified to be y by the “edge-over-random” classifier, which draws a label
randomly according to the distribution uγy . We have:

P
{

max
l 6=y

s(l) +Nl ≥ s(y) +Nr

}
= P

{
arg max

l∈[K]
Multinom

(
i, uγy

)
[l] 6= y

}
= 1−

∑
(n1,··· ,nk)

(
i

n1 · · ·nK

) K∏
i=1

uγniy (i).

Example 2 Let φy0(s) =
∑

l 6=y e
α(s(l)−s(y)), then by induction it can be shown that for

ak = (1 + eα + e−α − uγy(k)− uγy(y)):

φyi (s) = El∼uγy [φyi−1(s + el)]

=
K∑
k=1

(ak)
i−1
∑
l 6=y

uγy exp (α(s(l) + ek(l)− s(y)− ek(y)))

=
∑
l 6=y

exp(s(l)− s(y))

K∑
k=1

(ak)
i−1(eα + e−α +

∑
k 6=y,k 6=l

1)

=
∑
l 6=y

(

K∑
k=1

(ak)
i) exp (s(l)− s(y)) . (8)

in this case the loss becomes differentiable and results by Zinkevich on adversarial online
learning as mentioned in the textbook Hajek and Raginsky (2019) can be used later to show
the exponential decay of the number of mistakes. Also notice that this is a generalization of
the binary classification case where φyi (s) = eαyi for yi ∈ {−1, 1}.
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Just as the case in binary case, the loss matrix serves as a surrogate loss that upper
bounds the number of mistakes the expert makes, and thus we have the following theorem:

Theorem 4 Suppose weak learners and an adversary satisfy the online weak learning condi-
tion with parameters (δ, γ, S), For any T,N sucht that δ = O( 1

N ), and any adaptive sequence
generated by the adversary, the final loss of the onlineMBBM satisfies the following with
probability 1−Nδ:

T∑
t=1

Lyt(sNt ) ≤ φ1
N (0)T + S

N∑
i=1

wi
∗
, (9)

where wi
∗

:= supt∈[T ]w
i
t = supt∈[T ]

∑K
k=1 φ

yt
i (si−1

t + ek)− φyti (si−1
t + e1).

Proof By the definition of the potential function:

φyN−i+1(si−1
t ) = El∼uγy [φyN−i(s

i−1
t + el)]

= 〈Cit(y),uγy − elt〉+ φyN−i(s
i−1
t + elt)

= wit〈Di
t(y),uγy − elt〉+ φyN−i(s

i
t)

≤ witS + φyN−i(s
i
t), (10)

where the last inequality uses the online weak learning condition. Repeatedly applying Eq.
(10) and use the fact that Ly(sNt ) = φyt0 (sNt ) leads to the result.

3.4 Random drawing model and vote-by-majority algorithm

The random drawing model proposed by Jung et al. (2017) turns out to be a powerful
theoretical tools to understand the essence of boosting algorithm. The proofs below all

Theorem 5 Suppose the same condition as in Thm. (4) and γ < 1
2 the number of mistakes

the expert sNt make satisfies, with probability 1−Nδ:

T∑
t=1

1[yt 6= ŷt] ≤ (K − 1)e−
γ2N
2 T + Õ(K5/2

√
NS).

Therefore in order to achiever error rate ε, it suffices to use N = Θ( 1
γ2

ln k
ε ).

Proof The proof is outlined as follows: without loss of generality, let yt ≡ 1, ∀t ∈ [T ].
Then the booster makes an error if the event E = {0) = {maxk 6=1 si(k) ≥ si(1)}} happens.
The probability of such event can be bounded by the following steps:

1. Use union bound: P {E} ≤
∑k

k=2 P {Nk ≥ N1} = (k − 1).

2. The event that N2 ≥ N1 can be kept track by a random variable Y k
t = 1 if ŷt = k and

−1 if yt = −1 and 0 otherwise. Therefore, P
{
Y k
i = 1

}
= 1−γ

γ +γ,P
{
Y k
i = −1

}
= 1−γ

γ

and {Nk ≥ N1} = {
∑N

j=1 Y
k
j ≤ 0}. By Azuma-Hoeffding inequality, we can union

bound each of such event for all k to obtain the first term of the right-hand side;
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3. To bound the second term, if φ is the random drawing potential in Ex.1, we have
φ1
N (0) = P {E} and with the help Thm. (4), it suffices to upper bound:

wi
∗

= sup
t∈[T ]

K∑
k=1

φi(s
i−1
t + ek)− φi(si−1

t + e1) (11)

= P
{

max
k′

s(k′) +Nk′ + ek(k
′) ≥ s(1) +N1 ≥ s(k′) +Nk′

}
, (12)

using a similar tracking variable approach, it can be shown that this event is bounded

by C ′k
√
k
i . The proof uses some of the advanced bounds on the relation between

binomial random variables and Gaussian random variables called the Berry-Essen
theorem.

The random drawing model also provides a lower bound on sample complexity as well
as number of mistakes for the booster:

Theorem 6 For any γ ∈ (0, 1
4), (δ, ε) ∈ (0, 1) and S ≥ k ln( 1

δ
)

γ , there exists an adversary
with a family of learners satisfying the online learning condition with parameters (ε, δ, S),
an online boosting algorithm requires at least Ω( 1

k2γ2
ln(1

ε )) learners and a sample complexity

of Ω( kεγS).

Proof Construct a set of edge-over-random base classifiers such that for t ≤ T0 = kS
4γ ,

lit ∼ u0
yt = [ 1

k , · · · ,
1
k ] and lit ∼ u2γ

yt otherwise. It turns out that the base learners lit in this
case are γ-over-random. For T ≤ T0, by Azuma-Hoeffding inequality:

T∑
t=1

wtCt(yt, ŷt) ≤
T∑
t+1

wt
1

k
+

√
‖w‖22 ln

1

δ

≤
T∑
t=1

wt
1

k
+

4γ‖w‖1
k

+
k ln 1

δ

4γ
≤ ‖w‖1− γ

k
+ 2

γ

k
T0 + S = ‖w‖1− γ

k
+ S.

Similarly, the inequality holds for T > T0. By Thm. (4) the mistakes made by the set
of classifiers go to zero asymptotically. Therefore, T0 = O(kS4γ ) is a lower bound for time
complexity. Next, to show the lower bound for the number of learners, again use the random
drawing model on φ0(sN ) and a fact about Binomial distribution called Slud’s inequality:

P {error} ≥ P {N2 > N1} = P


N∑
j=1

Yj < 0


≥ P

{
Binom(m,

p1

p1 + p−1
>
m

2
)

}
≥ Ω(exp(−4mk2γ2)) ≥ Ω(exp(−4Nk2γ2)).
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3.5 AdaBandit Algorithm

One way MAB can be used in the Adaboost algorithm is in the feature selection step. The
same reasoning in the standard stochastic bandit identification setting works with almost
no modification. However, since the bandit is applied in each full pass of the dataset, the
algorithm is not online and still has large rooms for improvement.

Another way MAB can be applied is at the selection of experts in Adaboost. Sup-
pose we have a sequence of experts {si}Ni=1 formed by the base learners. If the Ad-
aboost.OLM is used, we need to choose the best expert. This can be seen as an best
arm identification problem and if Hedge algorithm is used, whose analysis will be left
out due to page constraints, the number of errors made by the chosen expert will be
no more than 2 min iMi + 2 logN + O(

√
T ) than the best expert. Notice that in the

previous section, we assume that the base classifiers all have the same edge γ. Jung
et al. (2017) introduce a suboptimal algorithm called Adaboost.OLM. In this algorithm,
Lr(s) =

∑
l 6=1 log(1 + exp(s(l)− s(r))) and in general Lr(s) can be any differentiable func-

tion that is monotonically increasing in s(l), l 6= r and decreasing in s(r). As in the binary
classification case, the loss can be minimized one base learner at a time using gradient
descent:

sit = si−1
t + αitelit

αit+1 = Π(αit − ηt
∂Lr(sit)

∂α
).

entries of the cost matrix are the gradients of Lr(s) with respect to s. To select the optimal
expert, the Hedge algorithm Littlestone and Warmuth (1989) is used, which randomly

choose an expert with probability vit+1 =
exp(−η

∑
t 1[yt 6=ŷit,it=i])∑N

j=1 exp(−η
∑T
t=1 1[yt 6=ŷit,it=j]]

.

Theorem 7 For any T and N , with probability 1 − δ, the number of mistakes made by
Adaboost.OLM satisfies the following inequality:

T∑
t=1

1[yt 6= ŷt] ≤
8(k − 1)∑N

i=1 γ
2
i

T + Õ(
kN2∑N
i=1 γ

2
i

).

Proof Here is a sketch of the proof:

1. First it can be verified that, the derivative of the logistic loss with respect to alpha is:

∂Lr(si−1
t )

∂α
:=


1

1+exp(si−1
t (r)−si−1

t (j))
, if l 6= r

−
∑

j 6=r
1

1+exp(si−1
t (r)−si−1

t (j))
, if l = r.

Notice that the gradient of the loss is a cost matrix from the property of the loss and
in this case, the magnitude of the loss is bounded by (k − 1), therefore the loss is
(k − 1)-Lipschitz continuous.
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2. Treat the algorithm as an online gradient descent problem on α and apply a stan-
dard analysis in online convex optimization by Zinkevich Zinkevich (2003): let ∆i :=
Lyt(sit)− Lyt(si−1

t ), we have

∑
t

∆i ≤ 2 min
α∈[−2,2]

∑
t

Lyt(sit)− Lyt(si−1
t + αelit) + 4

√
2(k − 1)

√
T . (13)

3. Next, notice that the first term on the right-hand side is upper bounded by an expres-
sion of its derivative, which seems to be a special property of Adaboost algorithm:
the exponential loss in the binary case also enjoys relation between the loss and its
derivative:

min
α∈[−2,2]

∑
t

∑
i

Lyt(sit)− Lyt(si−1
t ) ≤

∑
t

∑
i

(exp(α)− 1)
∑
t:lit 6=yt

Ci−1
t (yt, l

i
t)+

(− exp(−α) + 1)
∑
t:lt=yt

Ci−1
t (yt, l

i
t) ≤ −

γ2
i

2
wi

4. Observe that the number of mistakes made by base learner i: Mi :=
∑T

t=1 1[ŷit 6= yt]

is upper bounded by 2
∑T

t=1C
i(yt, ŷ

i
t): if expert i − 1 makes a mistake, at least one

term in −Ci[r, r] is no less than 1/2. Therefore −wi ≤ −Mi
2 . Combined the steps

and moved Mi to the left-hand side and take the min and apply the bound on Hedge
algorithm leads to the result.

Notice that similar bound holds for exponential loss and hinge loss as well since they also
have close relations to their derivatives Jung et al. (2017).

4. Conclusion and Future works

This project has covered a set of problems related to bandit-aided boosting. Due to time
constraints, I was not able to perform numerical experiments to test the theory presented
in the papers. In the future, I would like to implement a few boosting algorithm and see
the gap between theory and practice. Further, I would like to derive tighter lower bound
for Adaboost.OLM and bandit.OLM. As mentioned above, an alternative way to formulate
bandit-aided boosting will be to use stochastic bandits for feature selection and I would like
to understand the theoretical guarantee of it in the online boosting setting.
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Data: (xt, yt), t = 1, · · · , T ; a set of weak classifiers {hi}Ni=1

Result: best expert sN

Initialize the sample weights wt = 1
T

for t := 1 : T do
Receive data xt
for i := 1 : N do

Compute the cost matrix
Cit = [El∼uγφ1

N−i(s
i−1
t + el), · · · ,El∼uγφKN−i(s

i−1
t + el)] according to Eq. (??)

k∗m = km,T and normalize it to Di
t according to Eq. (??)

end
Weak learner i predicts the label lit based on Di

t

Booster computes the learner weight αit and update the votes sit = si−1
t + elit

Choose the expert i∗ according to distribution vt and makes a prediction ŷt
Receive true label yt
for i := 1 : N do

Set wi[t] :=
∑

l[φ
yt
N−i(s

i−1
t + el)− φytN−i(s

i−1
t + eyt)]

Passing training example with weight (xt, yt,w
i[t]) to the weak learner i

Update expert distribution vt
end

end
Algorithm 1: General pseudocode for bandit boosting algorithm
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