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1 Introduction

In class we analyzed the online learning problem under the convex setting. We
learned that the average regret of the project gradient descent algorithm under
this setting is bounded by O(T−1/2), where T is the number of rounds. It is
O(log(T )) if the loss function is strongly-convex. In this paper, we analyze the
average regret of the follow-the-perturbed-leader algorithm under non-convex
setting. We can show that in the 1-D case the average regret is O(T−1/2). In
the multi-dimensional case, the average regret is O(T−1/3).

2 Problem Setup

Let F ⊆ Rd be the bounded set of possible actions available to the player. Let
D denote the diameter of F in terms of the l∞ norm. Let Z denote the possible
actions of the adversary. l : F×Z → R+ is the loss function. It is assumed that
l(·, z) is L-Lipschitz for all z ∈ Z. We define lt(ft) = l(ft, zt). At each time step
t, the player chooses ft ∈ F and the adversary chooses zt ∈ Z. Then, zt and
the loss l(ft, zt) is revealed to the player. At time T, the regret of the strategy

(ft) is RT ((ft)) = (
∑T
t=1 lt(ft))− inf

f∗∈F
(
∑T
t=1 lt(f

∗)).

It is assumed that the player has access to two offline oracles: the value oracle
and the optimization oracle. The value oracle takes the player action f and
the loss function l(·, z) as inputs, and outputs the loss l(f, z). The optimization
oracle takes a series of loss functions (l1, l2, ..., lk) and a vector σ ∈ Rd. It

outputs the optimal fixed strategy f∗ = argminf∈F{
∑k
i=1 li(f)− σᵀf}.

3 Algorithm

Algorithm 1: The player fixes a parameter η > 0. At each time step 1 ≤ t ≤ T ,
the player draws an i.i.d random variable σt ∼ (Exp(η))d, and picks the action

ft = argminf∈F{
t−1∑
i=1

li(f)− σᵀ
t f}
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This is a form of the follow-the-perturbed-leader algorithm[2]. The intuition of
adding the randomization is that deterministic algorithms can be predicted by
the adversary, who can always choose the least favorable cost function for the
player. Since ft is determined by σt, we use the notation ft(σt) to indicate this
relation.

4 Bounding the Regret

4.1 Reduction to the Oblivious Adversary

In this problem, the adversary is non-oblivious in the sense that it can react
to the actions of the player. Since the proposed algorithm only depends on
the loss of previous actions, the regret bound in this case is equivalent to the
bound when the adversary is oblivious [3][4]. Thus, we can assume that the
loss function (lt)

T
t=1 is chosen in advance, and that the vector σ ∼ (Exp(η))d is

drawn only once.

4.2 Bound by Stability

The follow-the-regularized-leader algorithm is

ft = argminf∈F{
t−1∑
i=1

li(f) +R(f)}

where R(f) is a regularization term.
Lemma 1: For the follow-the-regularized-leader algorithm,

E[RT ] ≤ E[R(f∗)−R(f1)] +

T∑
i=1

E[lt(ft)− lt(ft+1)]

where f∗ = argminf∈F{
∑T
i=1 li(f)}.

Lemma 2: Under Algorithm 1, E[‖ft(σ)− ft+1(σ)‖1] = O(poly(d)ηδ + dδ). In
the one-dimensional case, E[|ft(σ)− ft+1(σ)|] = O(η).
proof for 1-D case:

∵ ft(σ) = argminf∈F{
t−1∑
i=1

li(f)− σᵀf}

∴
t−1∑
i=1

li(ft(σ))− σᵀft(σ) ≤
t−1∑
i=1

li(ft+1(σ′))− σᵀft+1(σ′)

t∑
i=1

li(ft+1(σ′))− σ′ᵀft+1(σ′) ≤
t∑
i=1

li(ft(σ))− σ′ᵀft(σ)

∴ lt(ft+1(σ′)− lt(ft(σ) ≤ (σ′ − σ)(ft+1(σ′)− ft(σ))
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Letting σ′ = σ + 2L and the using the fact that lt is L-Lipschitz:

−L|ft+1(σ′)− ft(σ)| ≤ lt(ft+1(σ′)− lt(ft(σ) ≤ 2L(ft+1(σ′)− ft(σ))

ft(σ) ≤ ft+1(σ′)

Similarly, ft1(σ) ≤ ft(σ
′). Let fmin(σ) = min{ft(σ), ft+1(σ)}, fmax(σ) =

max{ft(σ), ft+1(σ)}. We have fmax(σ) ≤ fmin(σ′).

E[fmin(σ)] =

∫ 2L

σ=0

ηe−ησfmin(σ)dσ +

∫ ∞
σ=2L

ηe−ησfmin(σ)dσ

=

∫ 2L

σ=0

ηe−ησfmin(σ)dσ +

∫ ∞
σ=0

ηe−η(σ+2L)fmin(σ′)dσ

∵ D is the diameter of F , fmax(σ) ≤ fmin(σ′)

∴ E[fmin(σ)] ≥
∫ 2L

σ=0

ηe−ησ(E[fmax(σ)]−D)dσ +

∫ ∞
σ=0

ηe−η(σ+2L)fmax(σ)dσ

= (1− e−2Lη)(E[fmax](σ)−D) + e−2LηE[fmax(σ)]

= E[fmax(σ)]− (1− e−2Lη)D

∵ ex ≥ 1 + x

∴ 1− e−2Lη ≤ 2Lη

E[|ft(σ)− ft+1(σ)|] = E[fmax(σ)− fmin(σ)] ≤ 2LDη

proof for multi-dimensional case:

∵ ft(σ) = argminf∈F{
t−1∑
i=1

li(f)− σᵀf}

∴
t−1∑
i=1

li(ft(σ))− σᵀft(σ) ≤
t−1∑
i=1

li(ft+1(σ′))− σᵀft+1(σ′)

t∑
i=1

li(ft+1(σ′))− σ′ᵀft+1(σ′) ≤
t∑
i=1

li(ft(σ))− σ′ᵀft(σ)

∴ lt(ft+1(σ′)− lt(ft(σ) ≤ (σ′ − σ)(ft+1(σ′)− ft(σ))

Letting σ′ = σ+Bδ−1 · ek, where ek is the kth element of the standard basis of
Rd. Assuming that the range of lt is [0,B]:

−B ≤ lt(ft+1(σ′)− lt(ft(σ) ≤ Bδ−1(ft+1(σ′)− ft(σ)) · ek

ft,k(σ)− δ ≤ ft+1,k(σ′)

where ft,k is the kth coordinate of ft. Similarly, ft,k(σ) − δ ≤ ft+1,k(σ′). Let
fk,min(σ) = min{ft,k(σ), ft+1,k(σ)}, fk,max(σ) = max{ft,k(σ), ft+1,k(σ)}. We
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have fk,max(σ)−δ ≤ fk,min(σ′). For a fixed k, we denote by E−k the conditional
mean given the noise σ except for its kth coordinate σk.

E−k[fmin(σk)] =

∫ Bδ−1

σ=0

ηe−ησkfk,min(σk)dσk +

∫ ∞
σk=Bδ−1

ηe−ησkfk,min(σk)dσk

=

∫ Bδ−1

σk=0

ηe−ησkfk,min(σk)dσk +

∫ ∞
σk=0

ηe−η(σk+Bδ
−1)fk,min(σk +Bδ−1)dσk

∵ D is the l∞ diameter of F , fk,max(σk)− δ ≤ fk,min(σk +Bδ−1)

∴ E−k[fk,min(σk)] ≥
∫ Bδ−1

σk=0

ηe−ησk(E−k[fk,max(σk)]−D)dσk

+

∫ ∞
σk=0

ηe−η(σk+Bδ
−1)(fk,max(σk)− δ)dσk

= (1− e−Bδ
−1η)(E−k[fk,max](σk)−D) + e−Bδ

−1η(E−k[fk,max(σk)]− δ)

= E−k[fk,max(σ)]− (1− e−Bδ
−1η)D − e−Bδ

−1ηδ

≥ E−k[fk,max(σ)]− (1− e−Bδ
−1η)D − δ

∵ ex ≥ 1 + x

∴ 1− e−Bδ
−1η ≤ Bδ−1η

E−k[fk,max(σk)− fk,min(σk)] ≤ Bδ−1Dη + δ

Since the above bound holds for all fixed σ excluding the kth coordinate, the
unconditional mean is bounded in the same way:

E[fk,max(σk)− fk,min(σk)] ≤ Bδ−1Dη + δ

Thus,

E[‖fk,max(σk)− fk,min(σk)‖1] =

d∑
k=1

E[fk,max(σk)−fk,min(σk)] ≤ dBδ−1Dη+dδ

Theorem 1: The average regret of algorithm 1 is O(poly(d)T−1/3). In the 1-D
case, the avergae regret is O(poly(d)T−1/2).
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proof : From lemma 1

E[RT ] ≤E[σᵀ(f∗ − f1)] +

T∑
i=1

E[lt(ft)− lt(ft+1)]

≤E[‖σ‖∞]E[‖f∗ − f1‖1] + L

T∑
i=1

E[ft − ft+1]

∵σ ∼ Exp(η)d

∴E[‖σ‖∞] ≤ η−1(log(d) + 1)

E[RT ] ≤η−1(log(d) + 1)D + L

T∑
i=1

E[ft − ft+1]

From lemma 2

E[RT ] ≤η−1(log(d) + 1)D +O(LT (
poly(d)η

δ
+ dδ))

=O(poly(d)(η−1(log(d) + 1) + T (
η

δ
+ δ)))

Setting η = T−2/3, η = T−1/3 we have:

E[RT ] ≤O(poly(d)T 2/3)

E[RT /T ] ≤O(poly(d)T−1/3)

In the 1-D case:

E[RT ] ≤η−1D + LTO(η)

Setting η = T−1/2 we have:

E[RT ] ≤O(T 1/2)

E[RT /T ] ≤O(T−1/2)
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