
Accelerating AdaBoost algorithm using

Multi-armed bandits

Hieu Huynh - hthuynh2

May 10, 2019

1 Introduction

This report study the connection between the AdaBoost algorithm and the
multi-armed bandit problem in the way such that multi-armed bandits can
help to reduce the search space for finding the weak classifier at each iter-
ation, which will eventually leads to faster performance of AdaBoost algo-
rithm. In the first section, we will discuss the AdaBoost algorithm, and how
to speed up the process of finding weak learner at each iteration. We also
show how this problem can be connected to the Multi-armed bandit prob-
lem. In the section 3, we will discuss the reward function, and the framework
of using multi-arm bandit to speed up AdaBoost algorithm. Then, we will
analyze the 2 different Multi-arm bandits algorithms, UCB and EXP3.P.

2 AdaBoost

2.1 The algorithm

Let G be a class of classifiers g : Rd 7→ {−1,+1}. Given the training data
Zn = (Z1, .., Zn), where each Zi = (Xi, Yi) with Xi ∈ Rd and Yi ∈ {−1,+1},
the AdaBoost algorithm works as described in Figure 1.

Let define some notations that we will use later:
et := et(gt): The weighted emperical error of the weak learner chosen at
iteration t.
γt := 1− 2et: The edge, which represents how much the performance of the
weak learner chosen at iteration t is better-than-chance.
Ln := 1

n

∑n
i=1 1{sgn(fT (Xi)) 6=Yi}: The emperical zero-one loss of the output

classifier

1

Algorithm 1 AdaBoost algorithm

1: Initialize w(1) = (w
(1)
1 , .., w

(1)
n) with w

(1)
i = 1/n for all i

2: for t = 1 to T do
3: begin
4: Find gt ∈ G that minimize the weighted emperical error

5: et(g) :=
∑n

i=1w
(t)
i 1{Yi 6=g(Xi)}

6: w
(t+1)
i :=

w
(t)
i exp(−αtYigt(Xi))

Zt

7: where Zt :=
∑n

i=1w
(k)
i exp(−αkYigt(Xi))

8:

9: and αt := 1
2 log(1−etet

)
10: end
11: Output classifier: fT (x) :=

∑T
t=1 αtgt(x)

Le := 1
n

∑n
i=1 exp(−fT (Xi)Yi): The emperical exponential loss of the out-

put classifier

2.2 Reducing the search space when finding weak learner

Noticing that in step 4 of the algorithm, we have to search over all elements
g ∈ G to find the weak learner that minimize the weighted emperical er-
ror. A way to reduce the search space is that we can search over only a
subset of G to find the weak learner that minimize the weighted emperical
error. Specifically, let H = {H1,H2, ...,HM} with Hj ⊆ G for all j; at each
iteration, we pick an element Hj ∈ H and search over that Hj to find the
best weak learner. Although the weak learner that we find using the new
method might not be as good as the one that is found using the original
method, the process of finding weak learner is faster. And it can be shown
that appropriately choosing the subspaces to search over and with some ex-
tra assumptions, we can still get a strong classifier after O(log n) iterations
with high probability.
To show that choosing only a subspace to search over can help to speed
up the AdaBoost algorithm, let’s consider the following example. Assuming
there are d features, we use decision stump as weak learner and partition the
whole space G by assigning a subset to each feature (i.e. H = {H1, ...,Hd}).
Assuming the running time to find the weak learner from each of the Hj is
the same and the time to make decision on which subset to use is O(1), for
each iteration, the time to find a weak learner by searching only a subspace

2

will be O(d) times faster than by searching over the whole space G. There-
fore, if there are lots of features and if the total number of iterations for
the modified algorithm and the original algorithm is about the same, then
the total running time of the modified algorithm is much smaller than the
original algorithm.

3 Adaboost combined with Multi-armed bandit
problem

Papers [2] and [3] discussed a framework in which the process of chosing
which subset of G to use is treated as a multi-armed bandit problem. Specif-
ically, for each iteration, choosing an element Hj from H is equivalent to
choosing an arm to pull. And the reward for that choice is calculated based
on the accuracy of the weak learner selected from that subset Hj so that
maximizing the total reward is equivalent to maximizing the total accuracy
(i.e. minimizing the total error).

Papers [2] and [3] suggested to use the reward function r
(t)
Hj

= min(1,−1
2 log(1−

γ2Hj
)) for the action choosing Hj at time t with γHj be the edge of the weak

learner chosen from Hj . This suggestion coming from the fact that we
want to minimize the Le (i.e. the emperical exponential loss of the out-
put classifier), and according to Lemma 8.3 in the course note, Le can be
written as

∏T
t=1 2

√
et(1− et) with et be the weighted emperical error of

the weak classifier chosen at time t. Replacing et with the edge γt (de-
fined in section 2), we have Le =

∏T
t=1

√
1− γ2t . Taking the log on both

sides, we have log(Le) =
∑T

t=1−
1
2 log(1− γ2t). Now, it’s intuitive to choose

r
(t)
Hj

= min(1,−1
2 log(1 − γ2Hj

)) to be the reward for choosing Hj at time t.

The reason of taking the min of 1 and −1
2 log(1−γ2Hj

) is to bound the reward

in the interval [0, 1].

3.1 Accelerating AdaBoost with UCB

With the framework above, paper [2] suggested to use the Upper Confi-
dence Bound (UCB) algorithm to solve the multi-armed bandit problem.
The UCB algorithm uses an upper confidence bound, Ût(a), of the reward
value to measure the potential of an action having optimal value, so that
the true expected reward receiving by an action, Qt(a), is bounded by the
sum of the sample mean, Q̂t(a), and the upper confidience bound with high

3

probability (i.e. Qt(a) ≤ Q̂t(a) + Ût(a)). The action time t is selected
greedily to maximize the upper confidence bound (i.e. Q̂t(a) + Ût(a)). The
paper conducted some experiments and arrived at the conclusion that us-
ing this framework and UCB algorithm, the computational time of the Ad-
aBoost.MH (a more general version of AdaBoost that can handle multi-class
and multi-task classification problem) can often be improved by an order the
magnitude without sacrificing much accuracy.
Although UCB is a good choice for solving multi-armed bandit problem in
many cases, in this case, there’s a mismatch between the stochastic setup
of UCB and the choice of reward function. Specifically, on one hand, for
each iteration, given an action (i.e. the choice of Hj) the value of γt is de-

terministic, which means that the reward function r
(t)
Hj

is also deterministic.
On the other hand, the UCB assumes that the reward is randomly drawn
from a distribution. Although the framework is still applicable here, but
this mismatch makes it hard to give insight of how UCB can significantly
speed up the algorithm while not sacrificing much accuracy.

3.2 Accelerating AdaBoost with EXP3.P

With the framework above, paper [3] suggested to use the EXP3.P algorithm
[1] to solve the multi-armed bandit problem. EXP3.P is an Exponentially
Weighted Average Forecaster method, in which a probability distribution
over all arms are used to randomly drawn an arm, and the probability value
of an arm increases exponentially with the average of past rewards. The
detail of EXP3.P algorithm is describe in the subsection below.

3.2.1 EXP3.P Algorithm

Let’s discuss the EXP3.P algorithm and some important properties that we
will use later to prove that applying this algorithm into the framework above,
we can get a strong classifier after O(log n) iterations with high probability
and under some assumptions.

Let’s first discuss some notations. Let G
(t+1)
i be the total reward received

up to time t by following the EXP3.P algorithm (i.e. G
(t+1)
i :=

∑t
s=1 r

(t)

i(t)
).

Let Ĝ
(t+1)
i be the total estimated reward received up to time t by following

the EXP3.P algorithm (i.e. Ĝ
(t+1)
i :=

∑t
s=1 r̂

(t)

i(t)
). Let GEXP3.P be the total

reward received from time 1 to T by following the EXP3.P algorithm (i.e.

GEXP3.P :=
∑T

t=1 r
(t)

i(t)
). Let GMax be the total reward received from time

4

Algorithm 2 EXP3.P algorithm

Parameters: α ∈ R+, γ ∈ (0, 1], T

1: Initialize w(1) = (w
(1)
1 , .., w

(1)
M) with w

(1)
i = exp(αγ3

√
T
M) for all i

2: for t = 1 to T do
3: begin
4: for i = 1 to M do

5: p
(t)
i = (1− γ)

w
(t)
i∑M

j=1 w
(t)
j

+ γ
M

6: Choose i(t) randomly according to p
(t)
1 , ..., p

(t)
M

7: Receive reward r
(t)

i(t)
∈ [0, 1]

8: for j = 1 to M do
9: begin

10: r̂
(t)
j = r

(t)
j /p

(t)
j if j = i(t), r̂

(t)
j = 0 otherwise

11: w
(t+1)
j = w

(t)
j exp(γ

3K (r̂
(t)
j + α

p
(t)
j MT

))

12: end
13: end

1 to T by following the best fixed strategy (i.e. GMax := maxj
∑T

t=1 r
(t)
j).

Let σ̂
(t+1)
i :=

√
MT +

∑t
s=1

1

p
(s)
i

√
MT

.

Following is some explaination about the EXP3.P algorithm and an impor-

tant property. The distribution p
(t)
1 , ..., p

(t)
M is a mixture of uniform distirbu-

tion and a distribution which assign probability value to action based on its
weight. Therefore, the value of γ controls how much the exploration factor.

We estimated reward r̂
(t)
j is set to r

(t)
j /p

(t)
j in order to guarantee that this

is an unbiased estimator, and to compensate the reward of unlikely cho-

sen action. With the definition of σ̂
(t+1)
i above, the weight of action j at

time t + 1 (i.e. w
(t+1)
j) can be written in term of upper confidence bound

Ĝj(t) + ασ̂
(t+1)
j . And with the appropriate choice of α and γ, it can be

shown that the regret of using the EXP3.P algorithm instead of the best
fixed strategy is O(

√
MT ln(MT/δ)), more detail is described in Theorem 1.

Theorem 1: For any fixed T > 0, for all M ≥ 2, and for all δ > 0, if

γ = min{35 , 2
√

3
5
M lnM
T } and α = 2

√
ln(MT/δ), then for any assignment of

rewards with probability at least 1− δ, we have:

5

GMax −GEXP3.P ≤ 4

√
MT ln(

MT

δ
) + 4

√
5

3
MT lnM + 8ln(

MT

δ
)

Note that a downside of this algorithm is that the time horizon T is needed
as an input parameter. However, the value of time horizon T might not be
available in some cases.

3.2.2 Accelerating AdaBoost with EXP3.P Algorithm

Using the framework above and the EXP3.P algorithm, we can show that
the modified version of AdaBoost still have the weak-to-strong-learning-type
performance guarantee under some extra assumption.
Theorem 2:
Let G be the clss of the base classifiers and H = {H1, ..HM} be an arbitrary
partitioning of G. Suppose that there exists a subsetHj+ ∈ H and a constant
0 < ρ ≤ γmax such that for any weighting over the training data set D, we
can always find a base classifier in Hj+ with an edge γHj+

≥ ρ. Then,
with probability at least 1− δ, the emperical zero-one loss Ln of the output
classifier will become 0 after at most

T = max

{
log2(

M

δ
), (

4C

ρ2
)4,

4log(n
√
K − 1)

ρ2

}
iterations, where C =

√
32M +

√
27M log(M) + 16, K is the number of

classes, and the input parameters for the EXP3.P algorithm are set to

γ = min

{
3

5
, 2

√
3

5

M logM

T

}

α = 2

√
log

MT

δ

Before discussing the proof, let’s first talk about the theorem. First
of all, the assumption in the theorem 2 is a stronger assumption than the
assumption in the original AdaBoost algorithm. In the original Adaboost
algorithm, we only assume that over the whole space G, there exist a weak
classifier with the weighted emperical error et ≤ 1/2 − ρ/2 (i.e. the edge
γt >= ρ) for any weighting over the training data set. However, in the

6

theorem 2, we assume that there exist a subset of H+
j such that there exist

a weak classifier with the edge γ ≥ ρ for any weighting over the training
data set. This stronger assumption might be hard to satisfy in some cases.
Another note on this theorem is that it shows an interplay between the
number of iterations T , the size of the subsets, number of subsets M , and
the quality of the subset in terms of ρ. Specifically, when the quality of
subset increases the total number of iteration needed to reach 0 training
error will decreases. When the total number of subsets increases, the total
number of iterations will also increase. This suggests that when we partition
the whole space G into more subsets, we will need to run more iterations,
but the running time of each iteration will be smaller. So, it is important
to find an optimal way to partition the whole space G in order to mini-
mize the total running time of the algorithm to achieve zero training error.
A limitation of this theorem is that there are restrictions on the parame-
ters γ and α, which require knowing the value of time horizon T beforehand.

Proof of theorem 2:

Let denote the reward of choosing subset Hj at time t by r
(t)
j

Let denote j∗ = argmaxj
∑T

t=1 r
(t)
j

Let denote the average reward of the retrospectively optimal arm by:

r∗ =
1

T

T∑
t=1

r
(t)
j∗

From section 3, we have log(Le) =
∑T

t=1−
1
2 log(1 − γ2t) with γ

(t)
Hj(t)

is the

edge of the weak learner that is chosen from Hj(t)
Let assume T > max{(4C

ρ2
)4, log2(Mδ)}, then we have:

7

Explanation of the proof:
(17), (20): Follow from the definition of reward function
(18): Follow from theorem 1
(19): Follow from the fact that r∗ is average reward of the retrospectively
optimal arm
(21): Follow from the fact that ln(

√
1− a2) ≤ −1

2a
2

(22): Follow from the assumption that 0 < ρ < γmax and γj∗ ≥ ρ
(23): Follow from the fact that

√
T > log(T)

(24): Follow from the assumption that T > log2(Mδ)
(26): Follow from the fact that T > 1
(27): Follow from the definition of C =

√
32M +

√
27M log(M) + 16

(29): Follow from the assumption that T > (4C
ρ2

)4

8

Therefore, we have: log(Le) ≤ −1
4Tρ

2 ⇒ Le ≤ exp(−1
4Tρ

2).
For the binary classification problem discussed in section 2, we have the fact
that the emperical zero-one loss is upper bound by the emperical exponen-
tial loss, therefore we have: the emperical zero-one loss L ≤ exp(−1

4Tρ
2).

With the condition that T < 4log(n)
ρ2

, we will have L < 1
n . On the other

hand, we have L is multiple of 1
n . Therefore L must be 0.

Note that this result can be generalized to multi-classes and multi-task prob-
lem by using the fact that L ≤

√
K − 1Le with appropriate initialization of

the initial weights. Therefore, combining this result with the assumptions
about T , Theorem 2 is proven.

4 Conclusion

This report studies the application of multi-armed bandit problem to accel-
erate the AdaBoost algorithm. First of all, we made the connection between
the AdaBoost algorithm and the multi-armed bandit problem, then 2 differ-
ent algorithms were considered for deciding which the subset of the whole
space G to search for the weak learner at each iteration. It’s shown that the
algorithm EXP3.P is more suitable for this purpose compared to the UCB
algorithm. This is because of the setting of EXP3.P is more suitable for the
adversarial setting of the AdaBoost algorithm, while the stochastic setting
of UCB algorithm prevents us from achieving the proof for the weak-to-
strong-learning-type performance guarantee. As suggested in [3], since the
process of training weak classifiers is sequential and not stateless, a Markov
Decision Process might be a more natural choice.

9

References

[1] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R.E. The
Nonstochastic Multiarmed Bandit Problem. SIAM J. on Computing,
32(1):48-77, 2002b.

[2] Busa-Fekete, R. and Kegl, B. Bandid-Aided Boosting. PT 2009: 2nd
NIPS Workshop on Optimization for Machine Learning

[3] Busa-Fekete, R. and Kegl, B. Fast Boosting Using Adversarial Bandits.
ICML’10 Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, 143-150

10

