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1 Intuition

Example 1.1 Consider a first order linear system ẋ = ax+ u where a ∈ R is fixed but unknown.
Together with the adaptive control law

u = −kx, k̇ = γx2, γ > 0 (1)

and let x1 = x and x2 = k, we then have a closed-loop system

ẋ1 = − (x2 − a)x1 (2a)

ẋ2 = γx1
2 (2b)

where the equilibrium set x1 = 0 is stable which can be shown by using LaSalle’s theorem and
choosing the Lyapunov function as

V (x1, x2) =
x1

2

2
+

(x2 − b)2

2γ
, b > a (3)

4

From example 1.1 [2], we see that the system can be stablized by using the adaptive control law but
the parameter a remain unknown. The purpose of this report is to analyse the transient dynamics
of parameter estimation using an empirical risk minimization algorithm, the least square estimate.

2 Introduction

In this report, the transient response of parameter estimation of any control law are carried out
using statistical concentration bounds. In addition, this paper also bounds the regret that is the
difference between the loss of self-tunning adaptive controller and the loss of the best controller
given full knowledge of the plant. Though in [4] it is limited to scalar system with an unknown
state parameter, this method can be generalized to multivariable system with unknown states and
control paramters as stated in [1] and [3].

The reason of finding a statistical bound on parameter estimation is that it helps to show the
stability, robustness and performance of the control law that use the result of parameter estimation.
The bound of the error of parameter estimation are used to be stated as the assumptions in the
theories of analysising stability, robustness and performance of the system. Now, it provides an
upper bound on the parameter estimation and thus it can be further applied in the theories of
stability, robustness and performance of the system and might offer a better, more efficient or more
robust control law.
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3 Finite Time Estimation Error Bounds

To further simplify the question, we consider a scalar linear discrete time system

xk+1 = axk + uk + wk, x0 = 0 (4)

where the parameter a ∈ R is fixed but as well unknown, similar in example 1.1 and w0, w1, . . . , wt

are independent zero mean sub-Guassian random variables with variance proxy σ2. For any control
input uk, we have an emirical risk minimization algorithm to estimate the parameter a with the
method of least square estimation:

ât = arg min
â∈R

t−1∑
k=0

(âxk − (xk+1 − uk))2 =

t−1∑
k=0

(xk+1 − uk)xk

t−1∑
k=0

xk2
(5)

The first result in [4] gives probability bounds on the estimation error ât − a which are stated as
follows and graphed in Figure 1:

Theorem 3.1. Define the dynamics of xk and estimation ât according to 4 and 5. Suppose for
every k that uk is a measurable function of x0, x1, . . . , xk, then for any ε > 0

P {|ât − a| > ε} ≤2(1 + ε2)−t/2 (6)

E
[
(ât − a)2m

]
≤ 2m+1m!

(t− 2)(t− 4) . . . (t− 2m)
, ∀ t ≥ 2m+ 1 (7)

Proof. Shown in [4] Theorem 4.

Remark 3.1. Note that for any given error boundary ε > 0, the probability of error exceeding ε
decays at least as fast as the exponential rate and it is independent of the control law determining
uk.

Figure 1: The upper red solid line is the upper bound
4

t− 2
of E

[
(ât − a)2

]
by Theorem 3.1.

The other 3 lines are the averages of empirical loss
1

t

t−1∑
k=0

(âk − a)2 over 105 simulations with the

parameter a = 0, 1, 2 respectively.
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4 A Regret Bound for Self-Tunning Control

Theorem 4.1. Define the dynamics of xk and estimation ât according to 4 and 5 together with the
feedback law uk = −âkxk for k ≥ 2 and with x0 = 0. We have the following closed-loop system

x1 = w0, x2 = ax1 + w1

xt+1 = (a− ât)xt + wt =

t−1∑
k=1

wkxk

t−1∑
k=1

xk2
xt + wt, t ≥ 2

(8)

Then

E
[
xt

2
]
≤ 704(t− 2)2

(t− 9)3
+ σ2, ∀t ≥ 10 (9)

Proof. Shown in [4] Theorem 6.

Remark 4.1. The feedback controller uk = −âkxk is called the self-tunning control. If the plant
is well known that means the parameter a is known, than the best feedback controller is uk = −axk
with the cost E

[
x2t
]

= E
[
wt−1

2
]

= σ2. Therefore, the value
704(t− 2)2

(t− 9)2
is an upperbound for the

regret on self-tunning control law. The upper bound are graphed in Figure 2.

Figure 2: The upper red solid line is the upper bound
704(t− 2)2

(t− 9)3
of the risk by Theorem 4.1. The

other line is the average performance difference between the self-tunning control (uk = −âkxk) and
the best controller given full knowldege of the plant (uk = −axk) over 105 simulations with the
parameters a = 1 and σ2 = 1.
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5 Extensions

5.1 Unknown Control Parameter

The results can be extended from an unknown state parameter to an unknown control param-
eter. Consider the system

xk+1 = xk + buk + wk, x0 = 0 (10)

We can estimate the parameter b with least square estimation and it gives us

b̂t =

t−1∑
k=0

(xk+1 − xk)uk

t−1∑
k=0

uk2
(11)

There should have similar results related to theorem 3.1 and theorem 4.1.

5.2 Multivariables System

To extend the system from scalar to multivariables system, we need a restriction on input
control law [1], to use least square estimation and have a error bound on the error of estimation.
Consider the system

xt+1 = Axt +But + wt, x0 = 0 (12)

where ut and wt are i.i.d N (0, σu
2Ip) and N (0, σw

2In) random vectors. Then the least square
estimator

(Ât, B̂t) := arg min
(Â,B̂)

1

2

t−1∑
k=0

‖Âxt + B̂ut − xt+1‖2 (13)

will have the error bound with probability at least 1− δ

‖Ât −A‖ ≤
16σw

√
(n+ 2p) log(18/δ)√

minλ(σ2uGtG∗t + σ2wFtF ∗t )
(14)

and

‖B̂t −B‖ ≤
16σw
σu

√
(n+ 2p) log(18/δ) (15)

where Gt and Ft are defined as

Gt :=
[
At−1B At−2B . . . AB B

]
and Ft :=

[
At−1 At−2 . . . In

]
(16)

That is to say

P
{∣∣∣θ̂t(i, j)− θ(i, j)∣∣∣ > ε

}
≤ δ(ε, t) (17)

where θ(i, j) := [A B]i,j . These results are proved and stated as Proposition 1.1 in [1] and in
Section 4 in [3].
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6 Conclusions and Future Works

These papers show analysis on parameter estimation. [4] shows error bounds on the estimation
of sigle state parameter, finite error moment bound in finite time steps and regret upper bound
of the self-tunning controller. This unknown state parameter estimation can also be extended
to unknown control parameter and even to multivariables system with unknown state and input
parameters, like in [1] and [3]. Though the later two papers restricts the control law to some
guassian i.i.d. input, they still provide a concentration bound on parameter estimation.

At the end of my presentation, Prof. Hajek proposed a suggestion on doing analysis on the worst
case scenario which should be good direction for the future research. In addition, the concentration
bounds for the general input has not yet been carried out, so this might be another direction worth
trying.
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