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Abstract

This is a summarize of mainly arXiv:1810.08240. It focuses on how to
estimate the mean (and sometimes variance) of a given sequence of variables
in an online learning setup. By online learning setup we meant that at every
time 𝑡 we are given an instance of 𝑋𝑡 and are to output an interval [𝑎𝑡, 𝑏𝑡] ⊂
ℝ depending on 𝑋1, … , 𝑋𝑡. The interval should have contained a certain
estimand; we fail if at any time 𝑡 our output does not contain so. The main
issue is to minimize 𝑏𝑡 − 𝑎𝑡 as well as the failure probability.

Problem Setup
Consider the following almost trivial setup: Let X be a single point {∗} (the ob-
servable is trivial). Let Y be ℝ. Let ℱ be ℝ, functions from the singleton to reals.
We use the quadratic loss, i.e., ℓ(𝑓) ≔ (𝑦 − 𝑓(∗))2. Then the risk minimizer is
𝑓∗ ≔ 𝔼𝑌 . So far this setup recovers the classical setup in statistics where a series
of i.i.d. random variables are given and we want to estimates the hidden parame-
ter. For instance, we may assume that 𝑋𝑖 follows Bernoulli(𝜇) for some unknown
𝜇; or we assume 𝑋𝑖 follows Normal(𝜇, 1) for some unknown 𝜇. In the machine
learning setup, our algorithm takes 𝑋1, 𝑋2, … and outputs an ̂𝑓 , and how good ̂𝑓
is is measured by, say,

sup
𝜇

𝔼(𝑌 − ̂𝑓)2 − 𝔼(𝑌 − 𝑓∗)2 = sup
𝜇

𝔼( ̂𝑓 − 𝔼𝑌 )2.

Here 𝑌 is a fresh sample and the supremum is taken over all possible hidden pa-
rameters. Other ways to measure how good ̂𝑓 is include finding 𝛿, 𝜀 such that

sup
𝜇

ℙ{| ̂𝑓 − 𝔼𝑌 | > 𝜀} < 𝛿.
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In classical statistics setting, the interval [ ̂𝑓 −𝜀, ̂𝑓 +𝜀] is called the confident interval
and 1 − 𝛿 is called the confident level. It can also be seen, for instance, as the 0-1
loss of ̂𝑓 . There are countless results regarding how to give confident interval with
a certain confident interval under different assumption on 𝑋𝑖: Bernoulli, normal
with or without fixed variance, sub-gaussian, sub-gamma, etc.

Classical Approach
The first step of the classical approach is to find the sufficient statistic. Formally
speaking, a sufficient statistic for the hidden parameter 𝜇 is an algorithm 𝑇 out-
putting a number 𝑇𝑛 = 𝑇 (𝑋1, … , 𝑋𝑛) such that the conditional distribution of
𝑋1, … , 𝑋𝑛 given 𝑇𝑛 does not depends on 𝜇 anymore. In other words, if a wise al-
gorithm is presented 𝑇𝑛, knowing 𝑋1, … , 𝑋𝑛 does not help improving the estimate
of 𝜇. For example, if we want to estimate the mean of Bernoulli or Normal, know-
ing the empirical average is sufficient. If we want to estimate the upper-bound of
a uniform distribution, then knowing the maximum among 𝑋𝑖’s is sufficient. The
concept of sufficient statistic provides some insight into the converse results: if 𝑇𝑛
as a random variable does not behave well, then there is very little we can say about
𝜇.

Let us continue the examples regarding estimating mean where the empirical
average is a sufficient statistic. We have the following result regarding averages:
Law of large numbers: ∑ 𝑋𝑖/𝑛 → 𝜇.
Central limit theorem: ∑ 𝑋𝑖/

√𝑛 → Normal(𝜇, 𝜎2).
Large deviations principle: ℙ{∑ 𝑋𝑖/𝑛 > 𝜇 + 𝑣} → exp(−𝑛𝐼(𝑣)) for some rate
function 𝐼(𝑣).
Finally law of iterated log: lim sup∑(𝑋𝑖 − 𝜇)/𝜎𝑛√2𝑛 log log𝑛 = 1. Except that
LLN is an optimistic result, CLT, LDP, and LIL all contain pessimistic results. They
are saying that the empirical average must deviate from the true mean by a certain
amount so the estimate of 𝜇 is never accurate. Any result regarding the confident
interval and level must follow.

New Approach
The generalization by Howard et. al. is threefold: One, they are using an online
learning setup. That is, at every time 𝑡 they want to produce a confident interval
[𝑎𝑡, 𝑏𝑡] based on the history 𝑋1, … , 𝑋𝑡. And the confident level is defined as the
probability that all (but finitely many) intervals contain the estimand. Two, while
the width 𝑏𝑡 − 𝑎𝑡 heavily depends on the variance, the algorithm does not need to
know the variance in the first place; it can estimate it on the fly. This is inspired
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by the fact that the empirical deviation is a sufficient statistic of the variance in,
say, the normal case. Three, they allow the mean and variance to change from time
to time without notifying the algorithm. This is similar to Zinkevich’s adversarial
framework of online learning where 𝑋𝑛 is chosen evilly to maximize the regret of

̂𝑓𝑛.
We now define explicitly what we want to estimate. Let our estimand, 𝜇𝑡, be

∑𝑡
𝑖=1 𝔼[𝑋𝑖|𝑋1 ⋯ 𝑋𝑖−1]/𝑡. Notice that this quantity is hisotry-dependent: the un-

derlying story is that everyday there is a fresh, fine, mean of 𝑋𝑖 conditioning on
the known history 𝑋1, … , 𝑋𝑖−1; and we are not interested in the coarse mean 𝔼𝑋𝑖.
In the sense of Doob decomposition theorem, 𝜇𝑡 is the predictable/drift part of 𝑋𝑖.
Let 𝑆𝑡 be ∑𝑡

𝑖=1 𝑋𝑖 − 𝔼[𝑋𝑖|𝑋1 ⋯ 𝑋𝑖−1]; this is the martingale part of the decom-
position of 𝑋𝑖. Similarly, let 𝑉𝑡 be the sum of conditional (fine) variances. Now
an LDP-flavor bound should look like ℙ{𝑆𝑡 > 0 + 𝑢(𝑉𝑡)} < 𝛿 or like

ℙ {1
𝑡

𝑡
∑
𝑖=0

𝑋𝑖 > 𝜇𝑡 + 𝑢(𝑉𝑡)
𝑡 } < 𝛿.

Here 𝑢 is a function that scales the variance properly such that the final probability
is 𝛿 (c.f. Chebyshev inequality).

Let 𝜓 ∶ [0, 𝜆max) → ℝ be a function. This function lives in the MGF world and
is used to bound other MGFs from above. We now state Howard’s Assumption 1:
for every 𝜆 ∈ [0, 𝜆max), there exists a supermartingale 𝐿𝑡(𝜆) such that 𝔼𝐿0(𝜆) is a
constant not depending on 𝜆, and such that

exp(𝜆𝑆𝑡 − 𝜓(𝜆)𝑉𝑡) ≤ 𝐿𝑡(𝜆).
This inequality handles two things at once: On one hand, if 𝑋𝑡 are i.i.d. random
variables, the LHS falls back to exp(𝜆𝑆𝑡 − logMGF(𝜆)𝑛) (where 𝑉𝑛 = 𝑛), which
appears in the derivation of the Cramér (rate) function in LDP. On the other hand,
if 𝑋𝑖 is very general (mean and variance change on the fly, historically dependent),
then the fact that 𝐿𝑡(𝜆) is a supermartingale provides first-moment bounds (c.f.
Hoeffding, Azuma, McDiarmid, etc).

Main Theorems
Theorem 1: Let ℎ(𝑘) be such that ∑ 1/ℎ(𝑘) < 1. Let 𝑆𝛼(𝑣) be a function of the
form 𝑘1√𝑣ℓ(𝑣) + 𝑐𝑘2ℓ(𝑣) where ℓ(𝑣) is of the form logℎ(log𝜂 𝑣) + log(𝔼𝐿0/𝛼)
and 𝑐, 𝑘1, 𝑘2, 𝜂 are properly chosen constants. Then

ℙ {1
𝑡

𝑡
∑
𝑖=0

𝑋𝑖 > 𝜇𝑡 + 𝑆𝛼(1 ∨ 𝑉𝑡)
𝑡 infinitely many times} = 0.
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Notice how this bound avoid LIL: If we let ℎ(𝑘) = 𝑘, then ℓ(𝑣) ≈ log log 𝑣 so
𝑆𝛼(𝑣) ≈ √𝑣 log log 𝑣 and 𝑆𝛼(1 ∨ 𝑉𝑡) ≈ 𝑂(√𝑡 log log 𝑡) since 𝑉𝑡 ≈ 𝑡. Then the
bound says that the average of 𝑋𝑡 deviates from the mean by √𝑡 log log 𝑡 finitely
many times, while LIL says infinitely many times. The bug here is that ∑ ℎ(𝑘)
does not converge. Should ∑ ℎ(𝑘) converge, then ℎ and ℓ and 𝑆𝛼 increase fast
enough to avoid LIL.

In particular, if we let ℎ(𝑘) = 𝑘𝑠 for some 𝑠 > 1, then 𝑆𝑡 has estimate

ℙ {𝑆𝑡√𝑡 log log(2𝑡) + 0.72𝑡 log(5.2/𝛿) for some 𝑡} < 𝛿

Theorem 2: Let 𝑤𝑘 be some properly chosen weights related to the pdf of 𝑋𝑖.
Then

DM𝛼(𝑣) ≔ sup{𝑠 ∈ ℝ ∶
∞

∑
𝑘=0

𝑤𝑘 exp(𝜆𝑘𝑠 − 𝜓(𝜆𝑘)𝑣) < 𝔼𝐿0
𝛼 }

is such that
ℙ {1

𝑡
𝑡

∑
𝑖=0

𝑋𝑖 > 𝜇𝑡 + DM𝛼(𝑉𝑡)
𝑡 once} = 0.

This bound is closely related to LPD for that if 𝑋𝑖 are i.i.d. random variables then
DM𝛼(𝑣) is just the “inverse function” of the rate function 𝐼(𝑣), which used to be
defined as sup𝜆 𝜆𝑥 − logMGF(𝜆).
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