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1 Abstract

Recent years have seen tremendous interest in understanding and predicting the spread or diffusion of
information on social media platforms such as Twitter, Facebook, etc. Modeling nformation spread
involves learning influence functions that map a set of initially activated seed nodes, to the result-
ing set of influenced nodes in the social network. In this project, we review and analyze the PAC-
learnability results derived by [4] of two classical well-studied influence functions: Linear Threshold
(LT), Independent Cascade (IC) models under the partial observation setting, i.e., we only know the
final set of influenced nodes, while the exact time steps of activation are unknown.
To analyze LT, the influencing process over multiple time steps is viewed as a multi-layer neural
network with deterministic binary valued outputs. Classical VC dimension bounds are applied to
obtain sample complexity guarantee through uniform convergence arguments. We analyze a special
case of k-regular graphs to derive precise bounds. On the other hand, the IC model is inherently
stochastic and continuous valued, which precludes a similar VC-based analysis. To address this
issue, the IC influence function is interpreted as an expectation over random draws of subgraphs and
the edge weights of social network are assumed to satisfy certain mild regularity conditions. This
facilitates the application of standard uniform convergence arguments based on covering numbers.
In this project, we briefly introduce the concept of covering numbers in the context of bounding
Rademacher averages to contrast the proof techniques with standard VC-based analyses.

2 Preliminaries

Definition 1 (Social Network). A social network is a finite graph G = (V, E) with nodes V =
{1, . . . , n} and edges E ⊆ V 2, |E| = r. Each edge (u, v) has a non-negative weight wuv ∈ R+, that
indicates the strength of influence of node v on node u.

Influence propagation in a social network starts from a small set of users, named seeds, which have
opinion 1, while the rest have 0. For simplicitly, we assume a step-wise propagation process with
discrete time steps, while ignoring the exact timestamps of activation/influence. At each step, a node
may change its opinion from 0 to 1 based on the opinion of its neighbors. Once influenced, the
opinion never changes back to 0.

Definition 2 (Social Network). A diffusion cascade (Xi, Y
1:n
i ) consists of an ordered sequence of

at most n node activations in ascending order of time, where Xi is the seed set of the cascade,
Y 1:n
i = {Y 1

i , . . . , Y
n
i } and Y t

i is the set of nodes influenced at time step t.
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Here, we consider a partial observation scenario, where the exact order of influence is not available
to learn an influence model, i.e., we only know the final set of influenced nodes in each cascade
(agnostic to activation orders). In this scenario, the training set of samples can be defined as:

Definition 3 (Training Samples). Zm = {(X1, Y1), . . . , (Xm, Ym)} where Xi is the seed set and Yi
is the set of influenced nodes in training sample/cascade i.

An influence function learns a model from the training samples Zm to map a set of seed nodes X to
the set of final influenced nodes Y . Formally, an influence function f can defined as:

Definition 4 (Influence Function). f : 2V 7→ [0, 1]n which maps an input seed set X to activation
probabilities [f1(X), . . . , fn(X)] ∈ [0, 1]n where fu(X) indicates the probability of influencing node
u ∈ V during any time step of propagation.

We denote the class of all influence functions under an influence model over G by FG. We measure
the performance of any influence function f using a loss function l : 2V× [0, 1]n 7→ R+ that measures
the mismatch between the target set of influenced nodes Y ⊆ V and predicted activation probabilities
f(X) ∈ [0, 1]n. The empirical and generalization risk for an arbitrary algorithm f under a loss
function l(·) are denoted by Ln(f) and L(f) respectively, which are defined as:

Ln(f) =
1

m

m∑
i=1

l(Yi, f(Xi)) L(f) = EX,Y [l(Y, f(X))]

Definition 5 (PAC-learnability of FG). We say that the class of influence functions FG is PAC-
learnable if with probability 1−δ, L(f)−L∗(FG) ≤ ε ∀m ≥ m(ε, δ) whereL∗(FG) = inf

f∈FG

(L(f)).

Here, we restrict our analysis to defining PAC learnability, rather than the efficiency of the algorithm.
We are only concerned about the existence of a learnable algorithm, while a polynomial time algo-
rithm may not be possible. Now, we define two specific influence models that have been well-studied
in the literature of social network analysis, Linear Threshold [2] and Independent Cascade [3] models.
Let At denote the set of nodes that are influenced at time step t.

Definition 6 (Linear Threshold). Each node u ∈ V has non-negative threshold ku ∈ R+ and is
influenced at time step t if the sum of the edge weights from its previously influenced neighbors at
time step t− 1 exceeds threshold ku, i.e.,

∑
v∈N(v)∩At−1

wuv ≥ ku.

Definition 7 (Independent Cascade). Each node u ∈ V is influenced at time t independently by each
previously influenced neighbor v with probability puv at time step t−1. Each node can then influence
its neighbors for one time step, and never changes its opinion to 0. Here, the influence probability
along an edge is defined as: puv = wuv/

∑
v′∈N(u)∪{u}

wuv′ .

3 Learnability of Linear Threshold (LT) Model

In this section, analyze PAC-learnability of LT model under a realizable setting, i.e., the training
samples Zm are generated using an LT model. Since the influence process is deterministic with
binary-valued outputs, the 0-1 loss is used to evaluate performance. Specifically, for target set Y ⊆ V
and predictions q ∈ {0, 1}n, the 0-1 loss function is defined as: l0-1(Y, q) = 1

n

n∑
u=1

(
qu 6= 1{u∈Y }

)
.
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Let fw ∈ FG denote an arbitrary influence function with parameters w ∈ Rr+n (edge weights and
thresholds). There exists an ERM algorithm that outputs an influence function f̂w with zero error

on training samples Zm, i.e., Lm(f̂w) = 1
m

m∑
i=1

l(Yi, f̂w(Xi)) = 0, since LT is deterministic and

training samples are generated via an LT model. Note that we are only concerned about the existence
of an ERM algorithm and not the computational feasibility of implementation. We now state the key
PAC-learnability result of the LT model.

Theorem (PAC learnability under LT model). The class of influence functions FG under the LT
model is PAC-learnable wrt 0-1 loss with sample complexity Õ(r + n/ε).

Since learnability under binary-valued functions is closely tied to the VC-dimension of the function
class FG, we state another lemma that is crucial to proving this theorem. For a given node u that has
not been influenced yet, let fu be the influence function predicting the activation of u.

Lemma (VC-dimension of LT influence functions). For a fixed node u ∈ V , the class of all LT
influence functions fu : 2V 7→ {0, 1} has a VC-dimension of at most Õ(r + n)

We first briefly sketch the key ideas towards proving this lemma and then illustrate the proof for the
special case of k-regular graphs.

Single-step LT: First, we analyze a single-step of activation for node u ∈ V at time step t assuming
Z is the set of influenced nodes at time step t − 1. At time step t, the output of influence function
fuw is defined as: fuw(Z) = 1{ ∑

v∈N(u)∩Z
wuv≥ku

}. This function can be interpreted as a two-layer neu-

ral network (NN) with linear activations, i.e., the input layer has n units (one per node) with binary
values indicating whether each node belongs to the set of influenced nodes at t − 1, Z. The output
layer (for node u) is a single binary unit with activation threshold ku that takes 1 if u is influenced
at time step t and 0 otherwise. The connections between the input and output layer are determined
based on the edges in G, with connection weights given by wuv. In total, there are n output units,
each corresponding to a node in G, i.e., the output layer returns a binary vector indicating activation
of each node at time step t. Next, we generalize this formulation to multiple propagation steps.

Multiple Steps: To analyze multiple propagation steps, an intuitive strategy is to extend the above
two-layer neural network by replicating the second layer for multiple time steps. However, the LT
model forces each node to be influenced only once, which implies further constraints on the structure
of the neural network, e.g., a self-loop can be set to have a weight exceeding threshold ku so as to
enforce that u remains active forever, once activated. However, such conditions only constrain the
expressive power of the neural network. Thus, fw is a neural network with n+ 1 layers, where each
layer has r + n parameters. The overall influence function can be represented as a neural network
with n + 1 layers, with each layer containing r + n parameters. A naive application of classic VC
bounds bounds result in n(r + n) parameters with VC dimension O(n(r + n) log(n(r + n)). Since
parameters in each layer are shared, the bound can be improved toO((r+n) log(r+n). We illustrate
a special case of this bound in the following example.

Example k-regular graphs. VC dimension of all functions fwu for node u satisfied V C(fwu ) ≤
4(k + 1) log((k + 1)n).
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Consider the case of k-regular graphs where each node in G has exactly k neighbors. Let us denote
by f t,uw : {0, 1}n 7→ {0, 1} the function computed at node u in layer t + 1 for a given seed set X .
Also, letF t,u denote the class of LT influence functions for different values of parameter w. Since the
layer 1 is the input layer, we examine the functions at t = 2, denoted as f1,u, which correspond to a
half-space classifiers. Since every node u has k neighbors, VC(f1,u) = k+ 1. Similarly, n such units
(for each node) are computed in layer 1 with linear threshold activations, which are required as input
to the third layer. Thus, the second layer has n half-space classifiers (of dimension k) to produce n
outputs (which is a cartesian product). We state the following two propositions without proof:

Proposition Shatter coefficient of cartesian products. Let F1 and F2 be two function classes, and
let F = F1 ×F2 be their cartesian product. Then, we have Sm(F) ≤ Sm(F1) · Sm(F2).

Proposition Shatter coefficient of compositions. Let F1 and F2 be two function classes, and let
F = F2 ◦ F1 be their composition. Then, we have Sm(F) ≤ Sm(F1) · Sm(F2).

By Sauer-Shelah lemma and the above two propositions,

Sm(f1,u) ≤
n∏
j=1

(
me

k + 1

)k+1

∀m ≥ k + 1 (1)

Here, our key claim is that with each new layer having the same connection weights, the ability of
a neural network to shatter a subset of points can only reduce. We formalize this argument as follows:
For any set of points of a given size shattered by f t,u : t ≥ 2, we prove that there exists a set of points
of the same size shattered by f t−1,u.
Consider a set of points {x1, . . . , xN} shattered by f t,u : t ≥ 2, i.e., let |f t,u(x1), . . . , f

t,u(xN )| =
2N over all possible parameters w. The key observation is that we can write each f t,u(xj) =
f t−1,u(zj) where zj = (f1,1(xj), . . . , f

1,n(xj)). Here, each zj corresponds to some point (obtained
after the application of the first layer) and the operations of the remaining t − 1 layers on zj can be
written as f t−1,u(·) since the connection weights are shared. Since |f t,u(x1), . . . , f

t,u(xN )| = 2N ,
it is necessarily the case that |f t−1,u(z1), . . . , f

t−1,u(zN )| over all possible parameters w, which im-
plies that the set of points z1, . . . , zN are shattered by f t−1,u. Thus, we get V C(f t,u) ≤ V C(f t−1,u).
Now, we use this result along with Eqn. 1 to get

Sm(f t,u) ≤
(

me

k + 1

)(k+1)n

∀m ≥ k + 1

We can easily see that for k ≥ 2, m = 4(k + 1) log((k + 1)n) is sufficient to make the RHS of the
above equation≤ 2m. Thus, we get a bound of the VC dimension, i.e., V C ≤ 4(k+1) log((k+1)n).

Thus, we illustrate the proof to derive a bound on the VC dimension for the LT influence function
given a node u in the special case of k-regular graphs. The PAC-learnability of LT influence functions
directly follows with VC-based bounds for binary-valued functions.

4 Learnability of Independent Cascade (IC) Model

In this section, analyze PAC-learnability of the IC model, which has probabilistic outputs. Instead
of 0-1 loss, the squared loss is used to measure performance. Specifically, for target set Y ⊆ V and
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predictions q ∈ {0, 1}n, the squared loss function is defined as:

lsq(Y, q) =
1

n

n∑
u=1

1{u∈Y } (1− qu)2 + 1{u/∈Y } (qu)2

A key assumption that is crucial to prove learnability of IC functions is to assume that the edge
probabilities are bounded away from 0 and 1, i.e., w ∈ [λ, 1− λ]r for some 0 ≤ λ ≤ 0.5.
First, the inherently stochastic IC function is given a closed-form interpretation as an expectation over
a randomly drawn subset of edges (subgraph) A from the graph G [3], i.e., the active edges can be
viewed as having been chosen using independent Bernoulli draws.

fwu (X) =
∑
A⊆E

∏
(a,b)∈A

wab
∏

(a,b)/∈A

(1− wab)σu(A,X)

where σ(A,X) evaluates to 1 if u is reachable from X via edges in randomly drawn subgraph A.
We consider a surrogate loss function, defined by the log-likelihood, which is a simpler function to
analyze, defined as:

L(X,Y,w) =
n∑
u=1

1{u∈Y } log(f̂uw(X)) + 1{u/∈Y } log(1− f̂uw(X))

The algorithm we consider for PAC-learnability is obtained through maximum likelihood (ML) esti-
mation of the IC influnece function f̂uw(X) using the above surrogate objective, i.e., the parameters w̄
are learned by optimizing:

w̄ = max
w∈[λ,1−λ]r

m∑
i=1

L(Xi, Yi, w)

It can also be easily verified that under the assumptions of the parameters w, the log-likelihood func-
tion is bounded and lipschitz continuous. We leave the reader to refer to the proof in the original
paper [4].

Theorem (PAC learnability under IC model). The class of influence functions FG under the IC
model is PAC-learnable wrt squared loss with sample complexity Õ(n3r/ε2).

Before delving into the proof, we first introduce the basics of covering numbers and their applica-
tion to PAC-learnability through uniform convergence of empirical means [1]. Informally, covering
number defines the number of Lp balls of size ε needed to completely a given space.

Definition 8 (Covering Number). Let S be a metric space with Lp norm and T ⊂ S. We define
T
′ ⊂ S as an ε-cover for T , if for all x ∈ T , there exists y ∈ T

′
such that ||x − y||p ≤ ε. The

ε-covering number of (T, Lp), denoted by N (α, T, Lp) is the size of the smallest ε-covering.

We now state and prove an extension of finite class lemma (that is applicable only to finite hy-
pothesis classes) to bound the rademacher averages based on covering numbers.

Theorem (Bounding Rademacher averages using covering numbers).. For any A ⊂ Rn such

that ||a||2 ≤ L ∀a ∈ A, we have R(A) ≤ inf
α>0

{
max
a
||a||2

√
2 logN2(

√
nα,A,L2)

n + α

}
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Proof: Let Ã be the α-cover of A in L2 norm of size |Ã| = N (
√
nα,A, L2). For element a, let ã be

the covering element. Now, we can rewrite the rademacher average as:

R(A) = Eε sup
a

1

n
〈ε, a〉 = Eε sup

a

1

n
〈ε, a− ã〉+ Eε sup

a

1

n
〈ε, ã〉

≤ R(Ã) +
1

n
||ε||2||a− ã||2 ≤ R(Ã) + α

To bound R(Ã), we use finite class lemma to get: R(Ã) ≤ maxa ||a||2
√

2 logN2(
√
nα,A,L2)

n .
Since α is arbitrary, we take an infimum over α, which completes the proof. This theorem implies
that the rademacher complexity of a function class can be bounded based on its covering number. To
demonstrate learnability of IC functions, we will bound the covering number of IC functions, given
by the key lemma:

Lemma (Covering number of IC influence functions). . The L1 covering number of the class of
all IC influence functions fu for radius ε is O((r/ε)r).

Proof:
We sketch the proof of the above lemma in two parts:

1. We first show that the IC influence function fuw is 1-Lipschitz wrt the L1 norm, i.e., For a given
X ⊆ V , for any w,w

′ ∈ Rr with ||w − w′ || ≤ ε, |fuw(X)− fu
w′

(X)| ≤ ε
We exclude this proof since it directly follows from definition of the influence function.

2. Then, we use the lipschtitz property to define an ε-cover over the space of IC functions.

The influence function fuw is parameterized by w ∈ [0, 1]r, which is bounded. It can be easily
shown that the space of parameters w can be covered by (r/ε)r balls of radius ε. Since fuw is
1-Lipschitz wrt L1 norm, max

Z⊆V
|fuw(Z)− fu

w′
(Z)| ≤ ||w − w′ ||1 This implies that the space of

parameters w is covered by R L1 balls if radius ε, then the corresponding influence functions
(with parameters as the ball centers) form an L∞ cover in the space of influence functions.

Now, that we have established a bound on the covering number of influence functions, we have all
the necessary tools to establish PAC-learnability of IC influence functions. The full proof makes use
of covering number based uniform convergence results for empirical (or equivalently surrogate) risk
minimization over a real-valued function class. It builds upon the above stated theorem that bounds
the rademacher complexity based on the covering number. We exclude the complete proof for the
sake of brevity.

5 Discussion and Future Work

Although IC requires estimation of fewer parameters than LT (r versus r + n), we find that the
sample complexity of LT model is proportional to n

ε , while IC varies as the inverse of n3

ε2
. Clearly,

this indicates that IC requires much more samples to learn on average, which is expected due to the
stochastic nature of IC, in comparison to deterministic binary-valued LT functions. Furthermore, it is
worth noting that unlike the LT model which has zero empirical risk, the optimal empirical risk for
IC is non-zero in general.
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The IC model makes a crucial regularity assumption of the edge probability space, i.e.,w ∈ [λ, 1−λ]r.
This assumption may not be completely realistic, e.g., even when all the neighbors of a node are
influenced at a time step, there is a small non-zero probability of the node not being influenced in the
next step.
This analysis does take into account the specific input distribution of seed users, which indeed is not
i.i.d in real world scenarios. Typically, the support of the seed distribution only covers a subset of
high-degree popular nodes in a social network. In future, it would be interesting to see how these
learnability results extend to a scenario with specific prior seed distributions.
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[3] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 137–146. ACM, 2003.

[4] Harikrishna Narasimhan, David C Parkes, and Yaron Singer. Learnability of influence in net-
works. In Advances in Neural Information Processing Systems, pages 3186–3194, 2015.

7


