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Abstract—Compressed learning is based on the principle of
compressed sensing: a high dimensional signal can be recovered
from its low dimensional random projection, if the signal itself
satisfies the sparsity property and the number of measurement is
sufficiently large. This random projection itself serves a universal
dimension reduction technique. We investigated learning task
in the compressed domain, induced by this random projection.
There do exist learning bound in compressed domain, which
relies on the properties of the measurement matrix, such as
preservation of relative geometry.

I. INTRODUCTION

Learning in high dimension often suffers from curse of
dimensionality. A general strategy is to transform the high
dimension data to low dimension measurements, or features,
which resides in the compressed domain. For example, linear
dimension reduction includes principle component analysis
(PCA) that preserves the data variance, canonical correlation
analysis (CCA) that keeps the correlation between a pair
of data [1], and non-linear techniques includes Isomap [2]
and t-SNE [3]. In this report, we will consider a universal
dimension reduction method used in compressed sensing and
its effect in the subsequent classification and regression tasks.
The compressed sensing theory [4] proved that the data vector
can be recovered exactly if it can be sparsified in another
basis and the dimension of compressed domain satisfies certain
conditions. This exact recovery provides feasibility to perform
high-level tasks like classification and regression directly in
the compressed domain. However, recovery the original signal
from the lower dimension measurements is expensive as well
as the learning in high dimension spaces. If we are only
concerned about the result of learning, then the reconstruction
is not necessary at all, as the measurements preserves most of
the information in measurements, such as relative geometry
and learnability. In this report, we will review two papers
[5], [6], that gives learning bounds of compressed learning:
regression and classification in comrpessed domain.

II. LEAST SQUARE REGRESSION IN COMPRESSED
DOMAIN [5]

A. Problem Statement

Given dataset DK = {xk, yk}Kk=1 , xk ∈ X , yk ∈ R, each
pair is i.i.d. samples from distribution P . In detail, xk

i.i.d.∼
PX , and yk = f∗ (xk) + η (xk) ,E[η (xk)] = 0, var(η (xk)) =
σ2(xk), where f∗ is the unknown target function and η is the
noise. The goal is to recover this f∗ from the dataset DK , the

performance of recovery is assessed by the generalization risk
on a fresh sample:

L(f)
def
= E(X,Y )∼P

[
(Y − f(X))2

]
(1)

and the empirical risk is defined as:

LK(f)
def
=

1

K

K∑
k=1

[yk − f (xk)]
2 (2)

In the following, we will use

‖f − f∗‖2P
def
= EX∼PX [(f(X)− f∗(X))2] (3)

to denote the L2 norm of difference in f and f∗ according to
distribution P . This quantity coincides with excess risk (see
A):

excess risk = L(f̂)− L (f∗) =
∥∥∥f̂ − f∗∥∥∥2

P
(4)

If the optimal target funtion is not in the search space F ,
then this excess risk can be divided into two parts: estimation
error L(f̂) − inff∈F L(f) and the approximation error
inff∈F L(f)− L (f∗) = inff∈F ‖f − f∗‖2P .
In this paper, linear regression in the feature space is consid-
ered and the feature map is defined as:

ϕ : X → RN , ϕn(x) ∈ R (5)

The search space of this linear function can be defined as

FN
def
=
{
fα

def
= αTϕ, α ∈ RN

}
(6)

and the ordinary least square (OLS) regression in the data
domain searches for the best linear coefficients α ∈ RN in
terms of empirical risk,

min
α∈RN

1

K

K∑
k=1

‖yk − αTϕ(xk)‖2 = min
fα∈FN

LK(fα) (7)

This paper is interested in the case where N is very large
such that the approximation error is small. But in this case,
overfitting is likely to occur. There are several approaches
to regularize the solution, one is to add L1 (Lasso) or L2

(Tikhonov) penalty of the weight, another is to find the
minimizer of empirical error with minimal L2 norm.
The dimension reduction is confined to be a random linear
transform A ∈ RM×N and the features is denoted by

ψ : X → R(A), ψ(x) = Aϕ(x) ∈ RM ,M < N (8)

This random matrix A can be a Gaussian random matrix, ran-
dom Hadamard matrix. From Johnson-Lindenstrauss Lemma
[7], the norm of the data vectors are approximately preserved
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Fig. 1: Regression on the data domain and compressed domain

in random projection, as well as their relative geometry
distribution. After the data vectors are projected to compressed
domain, the search space is now:

GM
def
=
{
gβ = βTψ, β ∈ RM

}
(9)

and GM ⊂ FN (see B).

The procedure of bounding the excess risk in the com-
pressed domain is as follows: (see fig. 1):

1) The estimation error (dotted line) is bounded and is
decreasing as K increases

2) The expected excess risk (sum of green lines) in data
domain is bounded using the approximation error (green
dot-dash line)

3) The approximation error is increased when the search
space is reduced, but the difference (red solid line) is
bounded.

4) The expected excess risk in the compressed domain is
bounded (sum of two blue lines).

B. Approximation Error

The following lemma is a variation of Johnson-
Lindenstrauss lemma. It states that the inner product of data
vectors is also preserved during the projection.

Lemma 1. Let A be a M × N random Gaussian matrix,
(uk)Kk=1 be one of the K data vectors, and v be any vector
from RN . For any ε > 0, δ > 0, for M ≥ 1

ε2

4 −
ε3

6

log 4K
δ , with

probability at least 1− δ, we have∣∣(Auk)TAv − uTk v
∣∣ ≤ ε ‖uk‖ ‖v‖,∀k ∈ [K] (10)

Proof: See C
Using lemma 1, the following theorem bounds the changes

in approximation error between GM and FN . This applies to
linear algorithms like OLS and regularized method like Lasso
and ridge regression. The link starts from the optimal linear
regressor in FN .

Theorem 1. For any δ > 0,M ≥ 15 log(8K/δ), let A
be a M × N random Gaussian matrix and GM be be

the compressed domain resulting from this choice of A, let
α+ = arg minα∈RN L (fα) − L (f∗). Then with probability
1− δ, we have

inf
g∈GM

‖g − f∗‖2P ≤ inf
f∈FN

‖f − f∗‖2P +

8 log(8K/δ)

M

∥∥α+
∥∥2(E [‖ϕ(X)‖2

]
+ 2 sup

x∈X
‖ϕ(x)‖2

√
log 4/δ

2K

)
(11)

Proof: See D
This bound in approximation error assessed in GM increases

by at most O
(

log(K/δ)
M

)
‖α+‖2 E‖ϕ(X)‖2 compared to that

in FN . If we have infinity number of samples K → ∞, this
bound would solely depend on ‖α+‖2 E

[
‖ϕ(X)‖2

]
.

C. Expected Excess Risks

In the following, the expected excess loss is analyzed for
least-square regression [8]. There is one explicit assumption:
‖f‖∞

def
= maxx∈X |f∗(x)| ≤ B < ∞. The ordinary LS

regression with minimum L2 norm would yield:

α̂ = argmin ‖α‖ s.t. α minimizes ‖Y − Φα‖ (12)

Where Y ∈ RK is concatenation of yk and Φ ∈ RK×N is
the concatenation of ϕ(xk). From normal equation ΦΦT α̂ =
ΦTY , we can write α̂ = Φ†Y where Φ† is the pseudo inverse
of Φ. The truncated regressor can be written as:

f̂B(x)
def
= TB [fα̂(x)] , TB(u)

def
=

{
u if |u| ≤ B
L sign(u) otherwise

(13)
The expected excess risk of f̂B is bounded as

E
(∥∥∥f̂B − f∗∥∥∥2

P

)
≤c′max

{
σ2, B2

} 1 + logK

K
N

+ 8 inf
f∈FN

‖f − f∗‖2P
(14)

where a bound on c′ is 9216. Another simpler bound is to
consider the expectation EY condtionally on input data and
resulting empirical distribution PK :

EY
(∥∥∥f̂B − f∗∥∥∥2

PK

)
≤ σ2N

K
+ inf
f∈F
‖f − f∗‖2PK (15)

These two expected excess risk bounds are built on the basis
of known approximation error. In case of N → ∞, the
approximation would approach zero. In the following, the
expected excess risk in compressed domain can be bounded
combining II-B.

D. Excess Risk of Compressed Least-Square Regression
(CLSR) - Main Result

In compressed domain, we aim to search for the best
linear regressor in GM . Same as before, the optimal trucated
regressor is:

ĝB(x)
def
= TB

[
gβ̂(x)

]
, β̂ = Ψ†Y (16)

where Ψ ∈ K×M is defined similar to Φ, the concatenation
of ψ(xk). From theorem 1, we can obtain the following
corollary of CLSR
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Corollary 1. For any δ > 0, set M =

8
‖α+‖

√
E‖ϕ(X)‖2

max(σ,B)

√
K log(8K/δ)
c′(1+logK) , then if M ≥ 15 log(8K/δ),

with probability 1 − δ, the expected excess risk of the CLSR
estimate is bounded as:

E
(
||ĝB − f∗

∥∥2
P

)
≤16
√
c′max{σ,B}

∥∥α+
∥∥√E‖ϕ(X)‖2

×
√

(1 + logK) log(8K/δ)

K

×

(
1 +

supx ‖ϕ(x)‖2

E‖ϕ(X)‖2

√
log 4/δ

2K

)
+ 8 inf

f∈FN
‖f − f∗‖2P

(17)

Set M =
‖α+‖

√
E‖ϕ(X)‖2
σ

√
8K log(8K/δ). Assume N > K

and that the features (ϕk)1≤k≤K are linearly independent,
then if M ≥ 15 log(8K/δ), with probability 1−δ, the expected
excess risk of the CLSR estimate conditionally on the input
samples is upper bounded as:

EY
(
‖ĝB − f∗‖2PK

)
≤4σ

∥∥α+
∥∥√E‖ϕ(X)‖2

√
2 log(8K/δ)

K

×

(
1 +

supx ‖ϕ(x)‖2

E‖ϕ(X)‖2

√
log 4/δ

2K

)
(18)

Proof: See E
In case of K � log 1/δ, the expected excess risk reduces

to

O

(∥∥α+
∥∥√E‖ϕ(X)‖2 logK/δ√

K
+ inf
f∈FN

‖f − f∗‖2P

)
(19)

The factor ‖α+‖
√

E‖ϕ(X)‖2 determines the generalization
error of CLSR. If it is a constant that does not depend
on N , the estimation error bound of CLSR reduces to
O(logK/

√
K). While in the OLS in the data domain, this

estimation error is O(N logK/K). It is clear in the case when
N >

√
K, CLSR is better than the OLS in terms of estimation

error.
In summary, CLSR, which operates in a random subspace of
lower dimension, provides an alternative to usual penalization
techniques. It has smaller estimation error bound when the
term ‖α+‖

√
E‖ϕ(X)‖2 has a mild dependency on N . By

theorem 1, it also has a controlled changes in approximation
error compared to OLS.

III. SVM IN COMPRESSED DOMAIN [6]

A. Problem Statement

The problem setting is very similar to the previous re-
gression problem. Given dataset DK = {xk, yk}Kk=1 , xk ∈
X , yk ∈ {−1, 1} We assume that data vector x is s-sparse
and has finite `2 norm. Hence, the original data domain is:

X =
{
x ∈ RN : ‖x‖0 ≤ s, ‖x‖2 ≤ R

}
(20)

The data distribution is again denoted by P , and (xk, yk) are
i.i.d. samples from P . The empirical distribution is denoted by
PK . The goal of linear SVM is reduce the misclassification
rate EP [Y 6= f(X)], where f is the linear classifier function.

A surrogate objective, hinge loss, is introduced in the soft
margin SVM for dataset that are not linearly separable and
the hinge loss is defined as:

H(t) = max(0, 1 + t) ≥ 1{t ≥ 0} (21)

For a linear SVM classifier fw
def
= sgn(wTx), the hinge loss

is defined as:

HP (w)
def
= EP [1− Y wTX] (22)

and the empirical hinge loss is defined as:

HPK (w)
def
=

1

K

K∑
k=1

1− ykwTxk (23)

The true regularization loss of a classifier is:

LP (w)
def
= HP (w) +

1

2C
‖w‖2 (24)

and empirical regularization loss:

LPK (w)
def
= HPK (w) +

1

2C
‖w‖2 (25)

The following lemma states the property of optimal W that
minimizes empirical regularization loss. It is direct result of
convex duality and the proof is omitted here.

Lemma 2. Given dataset DK , let fw be the linear SVM
classifier obtained by minimizing LPK (w), then

w =

K∑
k=1

λkykxk (26)

where
∀k : 0 ≤ λK ≤

C

K
and ‖w‖2 ≤ C (27)

Similar to the previous regression problem, the compressed
sensing is achieved by random matrix A ∈ RM×N . We
will denote data domain dataset DK and compressed domain
dataset ADK

def
= {Axk, yk}Kk=1 , Axk ∈ RM . The correspond-

ing search space of linear classifier’s weights is denoted as
WN

def
= {w ∈ RN} and ZM

def
= {z ∈ RM}. The following

three classifier weights are used to bound the regularization
error.

w∗
def
= arg min

w∈WN

LP (w)

z∗
def
= arg min

z∈ZM
LP (z)

ŵ
def
= arg min

w∈WN

LPK (w)

ẑ
def
= arg min

z∈ZM
LPK (z)

(28)

Note here we are overloading LP , LPK , HP and HPK , when
the input is of compressed space, they are defined as:

HP (z)
def
= EP [1− Y zT (AX)]

HPK (z)
def
=

1

K

K∑
k=1

1− ykzTAxk

LP (z)
def
= HP (z) +

1

2C
‖z‖2

LPK (z)
def
= HPK (z) +

1

2C
‖z‖2

(29)
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Fig. 2: Relative relationship of z∗, w∗, ẑ, ŵ

B. Compressed Learning - Main Result

In this section, learning in compressed space with soft
margin SVM classifier will be discussed. If the dataset is com-
pressed via random matrix A and hence is directly presented in
the compressed domain, then with high probability, the SVM
classifier trained over the training set has generalization error
close to the generalization error of the best classifier in the
data domain.
The proof is based only on the classifier sgn(Aŵ). Generally,
it is not available from compressed training dataset.

Theorem 2. Let A ∈ RM×N be the compressed sensing
matrix, which acts as a near-isometry on any 2s-sparse vector.
That is for any 2s-sparse vector x ∈ RN :

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2 (30)

Let ẑ be the soft margin SVM classifier weight trained on
ADK and w∗ be the best linear classifier in the data domain,
with low Hinge loss, and large margin (hence small ‖w∗‖2).
Then with probability over 1− 2δ,

HP (ẑ) ≤ HP (w∗) +O

(√
‖w∗‖2

(
R2ε+

log(1/δ)

K

))
(31)

In case the data dimension N is very large, the dimension is
efficiently reduced to O(s logN) while imposing O(ε) error
on the performance of the classifier.
When the number of measurements M is sufficiently small,
the distortion factor ε would be large, yielding the compressed
SVM a weak learner. The performance could be improved
using boosting techniques like Ada-Boost. In this way, the
number of required measurement is reduced and the burden is
transferred to computational cost.

C. Compressed Learning - Proof

Definition 1 (Restricted Isometry Property). A ∈ RM×N
satisfies restricted isometry property, (s, ε)-RIP, if ∀x ∈
RN , ‖x‖0 ≤ s (s-sparse vector), the following near-isometry
property holds:

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2 (32)

From [4], a random Gaussian matrix A, whose entry follows
N (0, 1

M ), satisfies the (s, ε)-RIP with probability e−c(ε)M

when Ω(s log(M/s)). This RIP property is a weaker condi-
tion compared to aforementioned the Johnson-Lindenstrauss
lemma. And it is not constrained by the number of sample
points K. But similar to the lemma 1, we also need bounds
on the inner product between linear combinations of arbitrary
sparse signals, as SVM is based on inner product of the
classifier and the samples.

Lemma 3. Let A ∈ RM×N satisfies (2s, ε)-RIP, and x, x′ ∈
X be two s-sparse vector and their `2 norm is not larger than
R, then

(1 + ε)xTx′ − 2R2ε ≤ (Ax)> (Ax′) ≤ (1 + ε)xTx′ + 2R2ε
(33)

Proof: See F
The following lemma generalizes the preservation of inner

product of sparse vectors to the inner product between any
two vectors from the convex hull of the set of sparse vectors.
By lemma 2, the SVM classifier ŵ is a member of this convex
hull.

Lemma 4. Let A ∈ RM×N satisfies (2s, ε)-RIP and let two
dataset be DK = {xk, yk}Kk=1,D′K′ = {x′k, y′k}K

′

k=1 where
xk, x

′
k ∈ X , yk, y′k ∈ {−1, 1}. Let λ1, . . . , λK , λ′1, . . . , λ

′
K′ be

non-negative numbers such that
∑K
k=1 λk ≤ C,

∑K′

k=1 λ
′
k ≤

C ′ for some C,C ′ ≥ 0. Let

w =

K∑
k=1

λkykxk, w′ =

K′∑
k=1

λ′ky
′
kx
′
k (34)

Then

|wTw′ − (Aw)T (Aw′)| ≤ 3CC ′R2ε (35)

Proof: See G
This lemma states that implies that if the SVM classifier

weight w is projected to the compressed domain, the regular-
ization loss of Aw is almost the same as the regularization
loss in high dimensional data domain.
The following lemma connects the regularization loss of the
SVM classifiers in data and compressed domain.

Lemma 5. Let A ∈ RM×N satisfies (2s, ε)-RIP. Let ŵ be the
soft-margin SVM trained on DK with K samples, and let Aŵ
be the classifier weight in compressed domain, then

LP (Aŵ) ≤ LP (ŵ) +O(CR2ε) (36)

Proof: See H
The following lemma states that the empirical regularization

loss is close to the true loss when K is large. The proof is
omitted here.

Lemma 6. Let ŵ be the SVM classifier trained on DK , then
with probability 1− δ,

LP (ŵ) ≤ LP (w∗) +O

(
C log(1/δ)

K

)
(37)
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Finally, we can prove the main result of compressed learning
(theorem 2). By the definition of regularization loss,

HP (ẑ) ≤ HP (ẑ) +
1

2C
‖ẑ‖2 = LP (ẑ)

(from definition of regularization loss)

≤ LP (z∗) +O

(
C log(1/δ)

K

)
(from lemma 6)

≤ LP (Aŵ) +O

(
C log(1/δ)

K

)
(from definition of z∗)

≤ LP (ŵ) +O(CR2ε) +O

(
C log(1/δ)

K

)
(from lemma 5)

≤ LP (w∗) + +O(CR2ε) +O

(
C log(1/δ)

K

)
(from lemma 6)

= HP (w∗) +
1

2C
‖w∗‖2 +O

(
CR2ε+

C log(1/δ)

K

)
(from definition of LP )

(38)
Since the above inequality holds for all C, we can pick the
best C and the bound on the hinge loss becomes:

HP (ẑ) ≤ HP (w∗) +O

(√
‖w∗‖2

(
R2ε+

log(1/δ)

K

))
(39)

From this, we can see that when the number of samples K
goes to infinity, there still is a ineligible difference of hinge
loss between data domain and compressed domain.

IV. CONCLUSION

In this report, we reviewed two examples of compressed
learning: compressed least square regression and compressed
SVM classification. These high-level task is performed in the
compressed domain, induced by a random projection to a
lower dimension. The learning bound depends largely on the
properties of the measurement matrix, such as preservation of
relative geometry. The excess risk in compressed regression
can be bounded through, and it approaches the best regressor
in data domain with infinite number of samples. The hinge
loss in compressed SVM can also be bounded, but there is a
gap between the best classifier in data domain and compressed
domain, even if the number of samples goes to infinity.
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APPENDIX A
EXCESS RISK

L(f̂)− L (f∗) = E
[
(Y − f̂(X))2

]
− E

[
(Y − f∗(X))2

]
= E

[
(f̂(X))2 − (f∗(X))2

]
− E

[
2(f∗(X) + η(X))(f̂(X)− f∗(X))

]
= E

[
(f̂(X)− f∗(X))2

]
(40)

the last equality is because the noise η(X) is independent of
the target function f∗ as well as the estimate f̂ .

APPENDIX B
SEARCH SPACES RELATIONSHIP

For every function gβ ∈ GM ,∀x ∈ X , we have

gβ(x) = βTψ(x) = (ATβ)Tϕ(x) =⇒ gβ ∈ FN (41)

APPENDIX C
VARIATION OF JOHNSON-LINDENSTRAUSS LEMMA

Proof:
Given a random Gaussian matrix A ∈ RM×N , Aij ∼

N (0, 1
M ), then for any u in RN and any ε ∈ (0, 1), we have

P
(
‖Au‖2 ≥ (1 + ε)‖u‖2

)
≤ e−M(ε2/4−ε3/6)

P
(
‖Au‖2 ≤ (1− ε)‖u‖2

)
≤ e−M(ε2/4−ε3/6) (42)

We apply the above lemma to any vector u − w and u + w,
where u = uk

‖uk‖ , w = vk
‖vk‖ . From the parallelogram law, we

have the following event

4(Au)TAw = ‖Au+Aw‖2 − ‖Au−Aw‖2

≤ (1 + ε)‖u+ w‖2 − (1− ε)‖u− w‖2

= 4uTw + ε
(
‖u+ w‖2 + ‖u− w‖2

)
= 4uTw + 2ε

(
‖u‖2 + ‖w‖2

)
= 4uTw + 4ε

(43)

happens with probability larger than 1 − 2e−M(ε2/4−ε3/6).
Thus for each k ∈ [K], with probability 1−4e−M(ε2/4−ε3/6),
we have

|(Auk)TAv − uTk v| ≤ ε ‖uk‖ ‖v‖ (44)

using union bound considering all uk, the above inequality
holds for all k ∈ [K] with probability 1−4Ke−M(ε2/4−ε3/6).
Taking M ≥ 1

ε2

4 −
ε3

6

log 4K
δ suffices.
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APPENDIX D
PROOF ON BOUND OF APPROXIMATION ERROR

Proof: Let f+
def
= fα+ = arg minf∈FN ‖f − f∗‖P

denote the best linear regressor in FN , and g+ def
= gAα+ . The

approximation error of GM is bounded as:

inf
g∈GM

‖g − f∗‖2P ≤
∥∥g+ − f∗∥∥2

P

= L(g+)− L(f∗)

= L(g+)− inf
f∈FN

L(f) + inf
f∈FN

L(f)− L(f∗)

=
∥∥g+ − f+∥∥2

P
+ inf
f∈FN

‖f − f∗‖2P
(45)

Since

α+ = arg min
α∈RN

L (fα)− L (f∗)

= arg min
α∈RN

‖fα − f∗‖2P

= EP
[
(αTϕ(x)− f∗(x))2

] (46)

The optimal f+ within FN is a orthoprojection of f∗ onto
FN . Also, g+ ∈ GM ∈ FN , we can bound ‖g+ − f+‖2P using
concentration inequality.

∥∥g+ − f+∥∥2
P

= ‖gAα+ − fα+‖2P
= EP

[
(gAα+(x)− fα+(x))2

]
= EP

[
((Aα+)T (Aϕ)(x)− fα+(x))2

] (47)

Let Z(x)
def
= (Aα+)T (Aϕ)(x) − fα+(x). Since M ≥

15 log(8K/δ), we have ε2 def
= 8

M log(8K/δ) < 3
4 , therefore

M ≥ log(8K/δ)
ε2/4−ε3/6 . From C we know with probability > 1− δ

2 ,
the following holds for all k ∈ [K].

|Z (xk)| ≤ ε
∥∥α+

∥∥ ‖ϕ (xk)‖ ≤ ε
∥∥α+

∥∥ sup
x∈X
‖ϕ(x)‖ def

= C

(48)
Let g(xK) =

∑K
k=1 |Z(xk)|2, we have

C2 = sup
x
g(xk = x)− inf

x′
g(xk = x′)

EP
[
g(xK)

]
= EP

[
|Z(xK)|2

] (49)

from McDiarmid inequality, we have

P

{
EX∼PX |Z(X)|2 − 1

K

K∑
k=1

|Z (xk)|2 ≥ C2

√
log (2/δ′)

2K

}
= P

{
EP
[
g(xK)

]
− g(xK) ≥ C2

√
log(2/δ′)K/2

}
≤ exp(−KC

4 log(2/δ′)

KC4
) =

δ′

2
(50)

Now suppose 1
K

∑K
k=1 |Z (xk)|2 is concentrated around its

mean with probability 1− δ′

2 and Z(xK) is bounded by C for

all k with probability 1− δ
2 , we have

∥∥g+ − f+∥∥2
P

= EP
[
|Z(x)|2

]
≤ 1

K

K∑
k=1

|Z (xk)|2 + C2

√
log (2/δ′)

2K

≤ ε2
∥∥α+

∥∥2( 1

K

K∑
k=1

‖ϕ (xk)‖2 + sup
x∈X
‖ϕ(x)‖2

√
log (2/δ′)

2K

)

≤ ε2
∥∥α+

∥∥2(E [‖ϕ(X)‖2
]

+ 2 sup
x∈X
‖ϕ(x)‖2

√
log (2/δ′)

2K

)
(51)

Setting δ′ = δ/2, this inequality holds with probability at least
(1− δ/2) (1− δ′) ≥ 1− δ.

APPENDIX E
PROOF ON EXCESS RISK BOUND OF CLSR

Proof: From (14), replace f̂L with ĝL, we have

E
(
‖ĝB − f∗‖2P

)
≤c′max

{
σ2, B2

} 1 + logK

K
N

+ 8 inf
f∈GM

‖g − f∗‖2P
(52)

Since we assume that M ≥ 15 log(8K/δ), from theorem 1,
with probability 1− δ, we have

E
(
‖ĝB − f∗‖2P

)
≤

c′max
{
σ2, B2

} 1 + logK

K
M + 8 inf

f∈FN
‖f − f∗‖2P

+
64 log(8K/δ)

M

∥∥α+
∥∥2(E‖ϕ(X)‖2 + 2 sup

x
‖ϕ(x)‖2

√
log 4/δ

2K

)
(53)

Minimizing the RHS of (53) with respect to M would yield

M∗ = 8
‖α+‖

√
E‖ϕ(X)‖2

max(σ,B)

√
K log(8K/δ)
c′(1+logK) . Thus, we have the first

part of corollary 1. Similarly, using (15), we have

EY
(
‖ĝB − f∗‖2PK

)
≤ σ2M

K
+ inf
g∈GM

‖g − f∗‖2PK

≤ σ2M

K
+ inf
f∈FN

‖f − f∗‖2PK

+
8

M
log(8K/δ)

∥∥α+
∥∥2(E‖ϕ(X)‖2 + 2 sup

x
‖ϕ(x)‖2

√
log 4/δ

2K

)
(54)

Notice that in case of N > K and ϕ(xk) linear independent,
the inff∈FN ‖f − f∗‖

2
Pκ reduces to zero. By setting M =

‖α+‖
√

E‖ϕ(X)‖2
σ

√
8K log(8K/δ), we obtain the second half

of the corollary.
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APPENDIX F
PROOF ON THE PRESERVATION OF INNER PRODUCT IN

COMPRESSION

Proof: It is obvious that x − x′ is at most 2s-sparse,
therefore,

(1− ε)
(
‖x‖2 + ‖x′‖2

)
− 2(Ax)> (Ax′)

≤ ‖Ax‖2 + ‖Ax′‖2 − 2(Ax)> (Ax′)

= ‖A (x− x′)‖2
(55)

and

‖A (x− x′)‖2 ≤ (1 + ε) ‖x− x′‖2

= (1 + ε)
(
‖x‖2 + ‖x′‖2 − 2x>x′

) (56)

Putting these two equations together and use ‖x‖2 ≤
R, ‖x′‖2 ≤ R completes the proof of (1 + ε)xTx′ − 2R2ε ≤
(Ax)> (Ax′). And the other side of inequality can be proved
similarly and omitted here.

APPENDIX G
PROOF ON PRESERVATION OF INNER PRODUCT OF

CLASSIFIER WEIGHT

Proof: From the definition of w,w′, we have

(Aw)>(Aw′) =

K∑
i=1

K∑
j=1

λiλ
′
jyiy

′
j (Axi)

> (
Ax′j

)
=
∑
yi=y′j

λiλ
′
j (Axi)

> (
Ax′j

)
−
∑
yi 6=y′j

λiλ
′
j (Axi)

> (
Ax′j

)
(57)

Now since λi, λ′j ≥ 0, using lemma 3, we have

λiλ
′
j (Axi)

> (
Ax′j

)
≤ λiλ′j

(
(1− ε)x>x′ + 2R2ε

)
λiλ
′
j (Axi)

> (
Ax′j

)
≥ λiλ′j

(
(1 + ε)x>i x

′
j − 2R2ε

) (58)

Therefore,∑
yi=y′j

λiλ
′
j (Axi)

> (
Ax′j

)
−
∑
yi 6=y′j

λiλ
′
j (Axi)

> (
Ax′j

)
≤
∑
yi=y′j

λiλ
′
j

(
(1− ε)x>i x′j + 2R2ε

)
−
∑
yi 6=y′j

λiλ
′
j

(
(1 + ε)x>i x

′
j − 2R2ε

)
=
∑
i,j

λiλ
′
jyiy

′
j

(
x>i x

′
j

)
+
∑
i,j

λiλ
′
jε
(
2R2 + x>i x

′
j

)
≤ w>w′ + 3R2ε

M∑
i=1

λi

N∑
j=1

λ′j

≤ w>w′ + 3R2CC ′ε

(59)

The other side of absolute value:

w>w′ − 3R2CC ′ε ≤ (Aw)> (Aw′) (60)

can also be proved similarly.

APPENDIX H
PROOF ON REGULARIZATION LOSS OF ŵ, Aŵ

Proof: From lemma 2, we can write ŵ =
∑K
k=1 λkykxk,

with λK ≥ 0,
∑K
k=1 ≤ C. Apply lemma 4 with K =

K ′, x′k = xk, y
′
k = yk and D = C, we have

(Aŵ)T (Aŵ) ≤ ŵT ŵ + 3C2R2ε (61)

this gives 1
2C ‖Aŵ‖

2 ≤ 1
2C ‖ŵ‖

2 + O(CR2ε). Now if we fix
x ∈ X , y, apply lemma 4 again with K ′ = 1, D = 1 and
(x′1, y

′
1) = (x, y), we have

1− y(AŵT )Ax ≤ 1− yŵTx+O(CR2ε) (62)

Since 1 − yŵTx ≤ H(−yŵTx), and the RHS of the above
equation is always positive, we have

H(y(Aŵ)T (Ax) ≤ H(−yŵTx) +O(CR2ε) (63)

it follows that HP (Aŵ) ≤ HP (ŵ) +O(CR2ε). Combine the
difference in norms, the proof is complete.


