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Abstract

In this project, we investigated the tight relations between mutual in-
formation and the empirical risk minimization (ERM) algorithm. First,
we introduce a precise information-theoretic characterization for the uni-
form generalization risk of a learning algorithm. Then it is proved that
under the Axiom of Choice, an ERM learning rule that has a vanishing
learning capacity if and only if the 0-1 loss class has a finite VC dimension,
while the ERM of strongly-convex stochastic loss generalizes uniformly in
expectation as well. Finally, an application to large-scale convex opti-
mization is discussed.

1 Backgrounds

In this section, we give a brief introduction to empirical risk minimization
(ERM) and the concept of uniform generalization for a learning algorithm.

1.1 ERM

Due to the simplicity,generality, and statistical efficiency, learning via ERM of
stochastic loss has been widely applied in many learning problems. Given a
hypothesis space F , a domain Z, and a loss function on the product space
` : F × Z → R, the ERM learning rule selects the hypothesis f̂ that minimizes
the empirical risk:

f̂ = arg min
f∈F

{
LS(h) =

1

m

m∑
i=1

` (f, zi)

}
,

where S = (z1, . . . , zm) ∈ Zm and each zi is independently drawn according to
some unknown probability distribution P. By contrast, the true risk minimizer
is denoted as f? and given by

f? = arg min
f∈F
{L(h) = Ez∼P [`(f, z)]} .

Hence, learning via ERM is justified if and only if L(f̂) ≤ L (f?) + ε, for some
provably small ε.

The Fundamental Theorem of Statistical Learning states that a hypothesis
space F is agnostic PAC-learnable via ERM if and only if it is PAC-learnable
at all, and that this occurs if and only if F has a finite VC dimension1.
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1.2 Uniform Generalization

Suppose we have a learning algorithm A : Zm → F , which selects a hypothesis
f ∈ F according to a training sample S ∈ Zm. Then the generalization risk of
A w.r.t. some bounded loss function ` : F × Z → [0, 1] can be defined by

Rgen(A) = ES∼Pm,f [L(f)− LS(f)] ,

where the expectation is taken over the random choice of the sample and the
internal randomness in the learning algorithm. Theorem 10.3 in the lecture notes
implies that stability on average, or equivalently, generalization on average,is
sufficient for an ERM algorithm to be consistent.

Further, we can give the definition of uniform generalization of a learning
algorithm A as follow.

Definition 1.1. (Uniform Generalization) A learning algorithm A : Zm → F
generalizes uniformly with rate ε ≥ 0 if for all bounded parametric losses ` :
F × Z → [0, 1], we have |Rgen(A)| ≤ ε.

2 Main Theorem

The main theorem in the paper2 provides a precise information theoretic char-
acterization for the uniform generalization risk.

Theorem 2.1. Given a fixed 0 ≤ ε ≤ 1 and a learning algorithm A : Zm →
F that selects a hypothesis f ∈ F according to a training sample S ∈ Zm,
where zi ∼ P are i.i.d., then A generalizes uniformly with rate ε if and only
if J (f ; ẑ) ≤ ε, where ẑ ∼ S is a single random training example, J (x; y) =
‖p(x)p(y), p(x,y)‖τ , and ‖q1, q2‖τ is the total variation distance between the
probability measures q1 and q2.

Informally, we will call J (x; y) the ”variational information” between the
random variables x and y.

Consider the case with a finite hypothesis space |F| < ∞, by a classical
argument with the union bound1, the uniform generalization risk in this case is
Õ(
√

log |F|/m). Meanwhile, we can use some information theoretic inequalities
to derive the same bound for the variational information J (f ; ẑ):

J (f ; ẑ) ≤
√
I(f ; ẑ)

2
≤
√
I(f ;S)

2m
≤
√

log |F|
2m

,

where I(x,y) is the mutual information. Here, the first inequality is called
Pinsker’s inequality in information theory, the second inequality holds because
zi’s are i.i.d., and the last inequality follows because the mutual information is
bounded by the entropy and the entropy is maximized by uniform distribution.

Definition 2.2. (Capacity) The capacity of a learning algorithm A is defined
by

C(A) = sup
p(z)

{
J (f ; ẑ) = Eẑ∼p(z)‖p(f), p(f |ẑ)‖τ

}
,

where the supremum is taken over all possible distributions.

Therefore, the generalization risk of A is bounded by C(A) for any proba-
bility distribution and any bounded loss function. In the next section, we will
give several bounds on the capacity of ERM algorithms.
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3 Bounds on Capacity

3.1 ERM of 0-1 Loss Classes

First, we will recall a fundamental result in modern set theory.

Definition 3.1. (Well-ordered) A non-empty set Q is said to be well-ordered
if Q is endowed with a total order � such that every non-empty subset of Q
contains a least element. And � is called a well-ordering on Q.

A fundamental theorem proved by Ernst Zermelo in 1904 states that under
the Axiom of Choice, every non-empty subset can be well-ordered. Based on this
fundamental result, the following upper bounds on capacity of ERM algorithm
can be proved3.

Theorem 3.2. Given a well-ordered hypothesis space F endowed with �, a
domain Z, and a 0-1 loss ` : F × Z → {0, 1}. Let A : Zm → F be the learning
rule that outputs the “least” empirical risk minimizer to the training sample
S ∈ Zm according to �. Then, C(A) → 0 as m → ∞ if F has a finite VC
dimension d. In particular:

C(A) ≤ 3√
m

+

√
1 + d log 2em

d

m
.

Consider the standard binary classification setting, a lower bound for all
ERM rules can be proved.

Theorem 3.3. In any fixed domain Z = X × Y, let the hypothesis space F be
a concept class on X and let `(f, x, y) = I{y 6= f(x)} be the 0-1 loss. Then,
any ERM learning rule A w.r.t. ` has a learning capacity C(A) that is bounded
from below by C(L) ≥ 1

2

(
1− 1

d

)m
, where m is the training sample size and d is

the VC dimension of F .

From the above theorems, we can directly obtain a characterization of the
VC dimension of concept classes in term of information theory, which establishes
tight relations between uniform generalization and the ERM algorithm. This
will allow us to bridge information theory with statistical learning theory.

Theorem 3.4. Given a fixed domain Z = X ×Y, let the hypothesis space F be
a concept class on X and let `(f, x, y) = I{y 6= f(x)} be the 0-1 loss. Let m be
the training sample size. Then, the following statements are equivalent under
the Axiom of Choice:

1. F admits an ERM learning rule A whose learning capacity C(A) satisfies
C(A)→ 0 as m→∞.

2. F has a finite VC dimension.

Theorem 3.4 implies that for an ERM learning rule of 0-1 loss classes with
finite VC dimensions, no adversary can post-process the hypothesis and causes
over-fitting to occur. Equivalently, the empirical performance of the ERM al-
gorithm on the sample S is a faithful approximation to its true risk, regardless
of how that performance is measured.
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3.2 ERM of Strongly-Convex Loss Classes

In this section, the ERM learning rule for strongly-convex loss classes is ana-
lyzed. We now further assume that `(f, z) is γ-strongly convex, L-Lipschitz,
and twice-differentiable for each z. Moreover, the hypothesis space is Rd for
some finite d <∞.

First, a central limit theorem (CLT) can be established for the ERM learning
rule in this setting. In this section, we will simplify the notation by writing
`i(f) = `(f, zi).

Theorem 3.5. If the distribution P is supported on γ-strongly convex, L-

Lipschitz, and twice-differentiable loss functions, then
√
m
(
f̂ − f?

)
→ N (0,Σ)

as m→∞, where

Σ =
(
E`∼P

[
∇2` (f?)

])−1 · Cov (∇` (f?)) ·
(
E`∼P

[
∇2` (f?)

])−1
Theorem 3.5 shows that the sample complexity of stochastic convex opti-

mization depends on the curvature of the risk E`∼P [`(f)] at its minimizer f?.
Further, we can establish the following “conditional” version of the central limit
theorem.

Theorem 3.6. Let ˆ̀ ∼ P be a fixed instance of the stochastic loss, and let
the training sample be S = {ˆ̀} ∪ {`2, `3, . . . , `m} with `i ∼ P drawn i.i.d. and

independently of ˆ̀. Then, under the conditions of Theorem 3.5, we have

p(f̂ |ˆ̀)→ N
(
µ̃,

1

m− 1
Σ

)
,

where µ̃ = arg minf∈Rd

{
E`∼P

[
`(f) + 1

m−1
ˆ̀(f)

]}
and Σ is the covariance ma-

trix given by Theorem 3.5.

Theorem 3.6 implies that a single realization of the stochastic loss shifts
the expectation of the empirical risk minimizer f̂ and rescales its covariance.
Using Theorem 3.5 and Theorem 3.6, an upper bound on the capacity of ERM
algorithms for strongly-convex loss classes can be derived.

Theorem 3.7. Suppose that normality as given by Theorem 3.5 and Theorem
3.6 holds for the ERM learning rule A, Then the capacity of the ERM algorithm
satisfies

C(A) ≤
√

d

2m
+ o

(
1√
m

)
.

Theorem 3.7 implies that the capacity of the ERM learning rule of stochastic,
strongly-convex loss classes satisfies C(A)→ 0 as m→∞.

4 Application to Large-Scale Optimization

During the last decade, the data sizes have grown faster than the speed of pro-
cessors. In this context, the capabilities of statistical machine learning methods
is limited by the computing time rather than the sample size. The true goal
behind stochastic convex optimization in the machine learning setting is to es-
timate f?. The ERM rule provides such an estimate f̂ . However, a different
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estimator can be constructed, which is as effective as the empirical risk mini-
mizer f̂ .

Theorem 4.1. Under the conditions of Theorem 3.5, let S = {`1, . . . , `m} be
m i.i.d. realizations of the stochastic loss ` ∼ P and fix a positive integer
K ≥ 1. Let ∪Kj=1Sj be a partitioning of S into K subsets of equal size and

define f̂j to be the empirical risk minimizer for Sj only. Then, f̃ = 1
K

∑K
j=1 f̂j

is asymptotically normally distributed around f? with covariance (1/m)Σ, where
Σ is given by Theorem 3.5.

Theorem 4.1 implies that in the machine learning setting, one can triv-
ially scale the empirical risk minimization procedure to big data using a naive
parallelization algorithm. The alternating direction method of the multiplier
(ADMM) is a popular procedure in distributed learning, which produces a dis-
tributed algorithm with message passing for minimizing the empirical risk by
reformulating stochastic convex optimization problem into a “global consensus
problem”. However, theorem 4.1, by contrast, presents a much simpler algo-
rithm that achieves the desired goal.

5 Conclusion

In conclusion, we investigate the tight relations between variational information
and uniform generalization risk of the ERM algorithm. Several bounds have
been derived on capacity of the ERM rule for both 0-1 and strongly-convex loss
classes. It is proved that under the Axiom of Choice, an ERM learning rule that
has a vanishing learning capacity if and only if the 0-1 loss class has a finite
VC dimension, while the ERM of strongly-convex stochastic loss generalizes
uniformly in expectation as well. After that, it is proved that the ERM learning
rule for strongly-convex loss classes can be trivially scaled to big data.
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