
Bandit-Aided Boosting

Tiancheng Zhao

May 2019

Abstract

In this paper, we presented two works that uses method in multi-
armed bandit problems to accelerate the boosting algorithm. Adaboost
constructs a strong classifier in a stepwise manner by selecting simple base
classifiers and using their weighted vote to determine the final classifica-
tion. The procedure can be modeled by the sequential decision problem,
and the papers use algorithms of multi-armed bandit problems to bal-
ance exploration and exploitation. The experiment results on multiple
datasets show that the performance of bandit-aided boosting on the test
set is similar to that of full AdaBoost algorithm, while the convergence
speed is improved close to an order of magnitude.

1 Boosting Method

In this section, we are going to introduce the basics of boosting methods, as
well as its key characteristics.

Boosting is a family of ensemble methods which converts weak learner to
strong learners. The basic idea is to train weak learners in a sequential manner,
and each of the learner tries to correct all the previous predictions. It is shown
in practice that boosting can increase the performance of any learner. The base
learner is often decision stumps which is the one-decision two-leaf decision tree.
However, other base learners such as decision trees are also frequently used.

Formally, a sufficient condition for an algorithm to be called boosting is that,
given a base learner which always returns a classifier h(t) with edge γ(t) ≥ ρ
for given ρ > 0, it returns a strong classifier f(T) with zero training error after
a logarithmic number of iterations T = O(logn).

One representative of boosting method is the AdaBoost, which is the ab-
breviate for Adaptive Boosting Method. This method combines multiple weak
learners into a single strong learner iteratively in the following manner. At each
iteration, the algorithm randomly include a weak learner, and train the weak
learner according to the weighted loss function. Initially, the weights of all ob-
servations are set to be equal. To correct the previous error, the observations
that were incorrectly classified now carry more weight in later iterations.

To formally describe the problem of AdaBoost, we need to introduce its basic
notations:

1

• K: the number of possible classes

• X = (x1, . . . , xn): n× d observation matrix, and x
(j)
i are the elements of

the d-dimensional observation vectors xi ∈ Rd.

• Y = (y1, . . . , yn): n×K label matrix, where yi ∈ {−1,+1}K .

In multi-class classification there is one and only one element of yi equal to
+1, in this case we use `(xi) to denote the correct class corresponding to xi. In
multi-label or multi-task classification there is no such constraint, and the value
of yi is arbitrary.

One particular form of Adaboost is the AdaBoost.MH proposed in [4], which
uses boosting to minimize Hamming loss, which is weighted empirical loss:

RH(f (T),W (1)) =

n∑
i=1

K∑
`=1

w
(1)
i,` I{sign(f

(T)
` (xi)) 6= yi,`} (1)

In the above equation, f (T) is the resulted strong learner obtained from the
algorithm, W (1) are the corresponding weights to each observations, I{x} is the
indicator function, which takes value 1 if x is true, and 0 otherwise, sign(x) is

the sign function, and f
(T)
` (xi) is the `th element of f(xi).

The pseudocode of the AdaBoost.MH algorithm is shown in Figure 1.

Figure 1: Pseudocode of the AdaBoost.MH algorithm

From Figure 1 we can notice that, the run time of AdaBoost.MH is propor-
tional to the number of data points n, the number of attributes d, the number
of boosting iterations T . Although the running time is linear in each of these
factors, the algorithm can be prohibitively slow if the data size n is large or the
number of features d is large. In this paper, our primary focus is to accelerate
the AdaBoost algorithm.

2

In order to minimize Hamming loss (1) in a tractable way, we can minimize
its upper bound, the exponential margin loss or the surrogate loss (2):

Re(f
(T),W (1)

) =

n∑
i=1

K∑
`=1

w
(1)
i,` exp{−f (T)

` (xi)yi,`}, (2)

In this paper we are only focusing on discrete based classifier h(x), which
can be represented as:

h(x) = αvφ(x), (3)

where α ∈ R+ is the base coefficient, v ∈ {+1,−1}k is the vote vector and
φ(x) : Rd −→ {−1,+1} is a scalar base classifier. We can also express the base
objective for each iteration as:

E(h,W (t)) =

n∑
i=1

K∑
`=1

w
(1)
i,` exp{−h(T)

` (xi)yi,`}. (4)

It can be shown that minimizing (2) is equivalent to minimizing (4) for each
iteration t. This is equivalent to maximize the edge:

γ =

n∑
i=1

K∑
`=1

wi,`v`φ(xi)yi,` (5)

And the base objective can be expressed as:

E(h,W) =
√

1− γ2. (6)

For each base learner, the value of (6) can serve as an indicator for the
reward of using that base learner, and since we are iteratively selecting the base
learners, this falls into the framework of Multi-Armed Bandit (MAB) problems
we are going to introduce next.

2 Multi-Armed Bandit

In this section, we are going to introduce the framework of multi-armed bandit,
and its two variants: stochastic bandit and adversarial bandit.

A multi-armed bandit problem (or, simply, a bandit problem) is a sequential
allocation problem defined by a set of actions. At each time step, a unit resource
is allocated to an action and some observable payoff is obtained. The goal is to
maximize the total payoff obtained in a sequence of allocations.

Bandit problems are basic instances of sequential decision making with lim-
ited information, and naturally address the fundamental tradeoff between ex-
ploration and exploitation in sequential experiments.

To formally describe the bandit problem, we need to introduce the basic
notations. In this paper we follow the terminology of [1]

3

• K: Number of arms (possible actions)

• n: Number of time steps

• Xi,t: Reward of choosing arm i at time step t, initially unknown to the
forecaster

• It: Arm actually chosen at time step t

Regret is the most frequently used performance measure of a bandit algo-
rithm. It is the difference between the performance of a player and an optimal
strategy that, for any horizon of n time steps, consistently plays the arm that
is best in the first n steps. Generally there are two notions of averaged regret:

Expected regret:

ERn = E[max
i=1,...,K

n∑
t=1

Xi,t −
n∑

t=1

XIt,t]

Pseudo-regret:

Rn = max
i=1,...,K

E[

n∑
t=1

Xi,t −
n∑

t=1

XIt,t]

Note that pseudo-regret is a weaker notion of expected regret, since the
latter is the regret with respect to the action which is optimal on the sequence
of reward realizations. So Rn ≤ ERn.

In stochastic bandits, each arm corresponds to an unknown probability dis-
tribution vi, and rewards Xi,t are independent draws from the distribution vi
corresponding to the selected arm. Formally as in Figure 2

Figure 2: Stochastic bandits

A very simple heuristic is to use the ε-greedy strategy which exploits the
known best strategy with probability 1 − ε, and explores with probability ε.
Based on that, people have proposed more dedicated UCB algorithms.

The intuition of UCB strategy is that, different ε-greedy strategy is selecting
arms randomly, it would be better if we select the arm with the largest potential
to be actually optimal, this arm could either have high reward estimates or large
uncertainties.

4

UCB algorithm chooses the arm with largest Upper Confidence Bound,
which is the sum of average reward and a confidence interval term:

max
j

1

T
(t)
j

t∑
t′=1

I{arm j is selected}r(t
′)

j +

√
2 ln t

T
(t)
j

. (7)

In [1], the authors have proved that the UCB algorithm can achieve a pseudo
regret bound which is linear in lnn. We’ll not going into details of that due to
space limit.

Another important variation of bandit problem is the adversarial bandit.
This problem assumes that there is an non-random adversarial which can choose
the reward for each arm in each iteration, and the choice can be influenced by
the decision maker’s previous actions.

Formally, denote by gi,t the reward of arm i at time step t. The adversarial
bandit is described as in Figure 3:

Figure 3: Adversarial bandits

Obviously, for any deterministic forecaster, there is a sequence of gi,t such
that the regret is large. So, the key idea is to add add randomization to the
selection of the action It to play. One algorithm to solve this problem is the
Exp3.P strategy.

The Exponential weights for Exploration and Exploitation (Exp3.P) strategy
maintains a probability distribution p(t) over the arms and draws a random
arm from this distribution in each iteration. The probability value of an arm
increases exponentially with the average of past rewards. The pseudo code of
Exp3 strategy is shown in Figure 4.

In [1], the authors have proved that the Exp3.P algorithm can achieve a
pseudo regret bound which is of order O(

√
nK lnK). We’ll not going into

details of that due to space limit.

5

Figure 4: Pseudo code for Exp3.P algorithm

3 Bandit-Aided Boosting

In this section we are going to talk about how to incorporate bandit algorithms
into boosting. Especially, two papers using UCB algorithm and Exp3.P algo-
rithm to accelerate AdaBoost.MH respectively. Also, the authors of the papers
performed numerical experiments to validate their result.

In [2], the authors incorporate the UCB algorithm as shown in (7) into
AdaBoost.MH. From the derivation of AdaBoost.MH, (6) suggests that using

reward of r
(t)
j = 1

2 log(1− γ2) or r
(t)
j = 1−

√
1− γ2 as reward for choosing arm

j at iteration t can fit into the framework of bandit problems. In fact, the later
is a better reward function since the two are almost identical in the lower range
of the [0, 1] interval, and the latter has a value always in that interval, which is
a requirement of MAB.

A natural partitioning of the base classifier set is the assign each feature to
a subset, if the base classifier is decision stumps. The experiments were carried
out using this setup. Probably there are other kind of partition methods, such
as include more than one feature per subset. However, it makes no sense to split
further, since the computational time of finding the best threshold on a feature
is the same as that for evaluating a given stump on a data set.

In this work, the stochastic setup has an inherent mismatch between the
adversarial nature of AdaBoost, in that the edges γj(t) is deterministic. So the
stochastic setup of UCB made it impossible to derive weak-to-strong-learning-

6

type performance guarantees on AdaBoost, and the connection between Ad-
aBoost and bandits remained slightly heuristic. In light of this argument, a
follow up work [3] applied an adversarial setup to the problem, and combine
the Exp3.P algorithm with the AdaBoost. In this paper, they also derived a
weak-to-strong-learning result for AdaBoost.MH.

Theorem 3.1. Let H be the class of base classifiers and G = {H1, ...,HM}
be an arbitrary partitioning of H. Suppose that there exists a subset Hj+ in
G and a constant 0 < ρ ≤ γmax such that for any weighting over the training
data set D, the base learner returns a base classifier from Hj+ with an edge
γHj+

≥ ρ. Then, with probability at least 1 − δ, the training error R(f (T)) of
AdaBoost.MH.Exp3.P will become 0 after at most

T = max(log2 M

δ
, (

4C

ρ2
)4,

4 log(n
√
K − 1)

ρ2
)

iterations, with proper input parameters, where C is a constant.

The authors also conducted numerical experiments to test the performance
of these algorithms using various data sets. They compared the performance
of full AdaBoost.MH, AdaBoost.MH with random feature selection, stochastic-
bandit-aided AdaBoost, and AdaBoost.MH.Exp3.P. Experiment result shows
that:

• In terms of test error:

– Full AdaBoost.MH wins most of the time although the differences
are rather small

– Exp3.P seems slightly better than UCB although the differences are
even smaller

– AdaBoost.MH with random feature selection has a much worse per-
formance compared with other methods

• In terms of convergence speed

– The improvement of bandit-aided boosting over full AdaBoost.MH
is often close to an order of magnitude

– Exp3.P also wins over UCB most of the time, and it is never signifi-
cantly worse than the stochastic-bandit-based approach

– The speed of AdaBoost.MH with random feature selection has a con-
stant improvement than the full AdaBoost.MH, however, it is still
much slower than either UCB or AdaBoost.MH.Exp3.P

References

[1] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends R© in Ma-
chine Learning, 5(1):1–122, 2012.

7

[2] R. Busa-Fekete and B. Kégl. Bandit-aided boosting. In OPT 2009: 2nd
NIPS Workshop on Optimization for Machine Learning, 2009.

[3] R. Busa-Fekete and B. Kégl. Fast boosting using adversarial bandits. In
27th International Conference on Machine Learning (ICML 2010), pages
143–150, 2010.

[4] R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine learning, 37(3):297–336, 1999.

8

