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ABSTRACT

This report explores the PAC-Bayesian theorem which blends Bayesian and frequen-
tist approaches to the theory of machine learning, and analyzes its applications to a
non-parametric data driven prior model which is Gaussian Processes. Furthermore,
it adapts the problem of estimating the risk associated with the obtained posterior
distribution over position space in presence of noisy controls to the above framework
with applications to safe autonomy.
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1 Introduction
Probably Approximately Correct (PAC) learnability is a notion introduced by Valiant in the mathe-
matical theory of learning, which is at the crossroads of computer science, optimization and statistics.
The PAC bound can be intuitively understood as the upper-bound of the performance of a learning
algorithm; as obtained by a loss function; which decays to an optimal value as more samples are
fed (or in other words, is approximately correct) with an arbitrarily high probability. These bounds
dont assume any prior knowledge about the hypothesis apart from independent sampling in their
derivation, as well as have very little constraints on the hypothesis class and data distribution. Hence,
it is widely applicable and is a valuable tool for deriving theoretical guarantees in various learning
problems.

Another way to approach a learning problem is the Bayesian perspective, which assumes a joint
distribution over input and hypothesis with the objective of inferring the conditional on hypothesis
given observations. It gives a principled way of managing randomness and uncertainty and hence
has been very useful in a variety of learning problems. The notion of generalised Bayes extends the
canonical Bayes theory to improve on the predictive capability while trading off interpretability. It
does this by dealing with arbitrary measures of quality of performance instead of the likelihood,
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such as the tempered likelihood, and allows a shift from the model-based procedure of canonical
Bayes to a model-free procedure.

PAC-Bayesian inequalities, introduced by McAllester, combine the theoretical performance deriving
capability of PAC bounds with the generalised Bayes framework, and hence provide a powerful tool
to derive theoretical measures of the performance of a learning algorithm in the presence of some
knowledge about the prior hypothesis distribution. These types of setting are more common in the
real world than the former, since we can characterize some form of a bias towards certain concepts
in a problem most of the time using previous or auxiliary information.

2 Problem Setting
Assume that the input data Dn is generated from a list of pairs (Xi, Yi)

n
i=1 ∈ Rd × R each of which

is iid sampled from an underlying distribution P. The objective is to determine an optimal estimator
f̂ ∈ F = {f : Rd → R} of Y ′ for any new sample (X ′, Y ′) or in other words, generalises. Now,
similar to the bayesian setting, we also have access to some prior information π0 operating on some
F0 ∈ F about the distribution of f̂ . The algorithm tries to infer the posterior distribution over the
estimator π(f̂ |Dn) or simply π

To assess the generalisation capability, we define a loss l ∈ R × R → [0, 1] which allows us to
define the risk, or expected loss, associated with a hypothesis f as

R(f) = E(x,y)∼D[l(f(x), y)]

The empirical risk associated with f is further defined as

R̂n(f) =
1

n

n∑
i=1

l(f(xi), yi)

To account for stochastic nature of the hypothesis class, we define an expected risk associated with
a posterior distribution π over the hypothesis class

L(π) = Ef∼πR(f)

and corresponding expected empirical risk

L̂n(π) = Ef∼πR̂n(f)

The PAC-Bayesian bounds deal with estimating (with arbitrary probability) the upper-bound on
L(π); which cannot be computed due to lack of knowledge about D; using L̂n(π) and other terms
which can be computed.

3 PAC-Bayesian bounds
We discuss three kinds of PAC-Bayesian bounds depending upon different constraints on the learning
problem. The bounds build incrementally, with each subsequent bound adding a level of complexity
over the former.

3.1 Occam Bound[1]

The Occam PAC-Bayesian bounds are derived assuming a discrete(countable) hypothesis class
F = {fi : i ∈ N}.

2
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Theorem 1. With probability at least 1-δ over iid draws from Dn we have that the following holds
for all f .

R(f) ≤ inf
λ>0.5

1

1− 1
2λ

(
R̂n(f) +

λ

N

(
ln(

1

π0(fi)
) + ln(

1

δ
)

))
(1)

Remarks Above theorem is derived from a simple application of Chernoff bound and equating
with the π0(fi)δ contribution of ith hypothesis to get

ε(fi) =

√√√√2R(fi)
(
ln( 1

π0(fi)
) + ln(1

δ
)
)

N

The expression can then be converted to the theorem by application of the following property which
holds by Jensen’s inequality

√
ab = inf

λ>0

a

2λ
+
λb

2

An interesting application of this theorem is in bounding the finite precision problem where the
parameter characterizing the hypothesis class is in Rd and each of its components is represented in
atmost b bits. Hence, we can assume that all possible 2bd hypothesis are equiprobable, which gives
us the bounds

R(f) ≤ inf
λ>0.5

1

1− 1
2λ

(
R̂n(f) +

λ

N

(
ln(2)bd+ ln(

1

δ
)

))
(2)

Another interesting bound is obtained if we know that our test hypothesis has a sparsity level
of s in the representation. The probability can then be broken into a probability of selecting s
uniformly from d choices, selecting those s components from d choices one by one and drawing
b-bit components for each choice. Hence the bound becomes

R(f) ≤ inf
λ>0.5

1

1− 1
2λ

(
R̂n(f) +

λ

N

(
lnd+ s(lnd+ (ln(2)b) + ln(

1

δ
)

))
(3)

4 Cantoni’s bound[2]

McAllester followed by Cantoni derived the bounds on expected risk for the continuous hypothesis
class, which are said to be the first PAC-Bayesian bounds. A variant is as follows

Theorem 2. With probability at least 1-δ over iid draws from Dn we have that the following holds
for all distributions π on F .

L(π) ≤ inf
λ>0.5

1

1− 1
2λ

(
L̂n(π) +

λ

N

(
KL(π‖π0) + ln(

1

δ
)

))
(4)

Remarks The bound is quite similar to Occam bound for discrete hypothesis, with the only
change being KL divergence term instead of negative log likelihood of the hypothesis, which
are essentially similar in spirit. Intuitively, KL divergence assigns a negative log likelihood to
continuous hypothesis distributions on the basis of their distance from the prior. Hence, similarity
to prior lowers the bound and vice versa.

3
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The theorem can be proved by bounding the bernoulli KL divergence between expected risk
and expected empirical risk KLγ(∧L‖L) by KL(π‖π0) using the shift of measure lemma of KL
divergence and convexity. Finally the bound can be derived using the property for any λ > 0.5

KL−1/λ(p‖q) ≤ c⇒ p ≤ 1

1− 1
2λ

(q + λc)

which can be derived by simple algebraic manipulations. An interesting application of this bound
is in the derivation of generalisation bounds for Dropout in neural networks. Assuming that the
weights of a layer are dropped to ε with probability α and are θi + ε otherwise where θ is the
trainable parameter and ε ∼ N (0, 1). The prior here can be taken to N(0, 1) while posterior is
distribution of r.v. s · θ + ε̄ where si is 0 w.p. α. KL divergence can be computed as

KL(π‖π0) = Es[
1

2
‖s · θ‖2] =

1− α
2
‖θ‖2

Hence the PAC-Bayesian bound can be computed as

L(πθ) ≤ inf
λ>0.5

1

1− 1
2λ

(
L̂n(πθ) +

λ

N

(
1− α

2
‖θ‖2 + ln(

1

δ
)

))
(5)

4.1 Training Variance Bound[1]

The third type of bound is derived from the Cantoni bound when the learning algorithm A is
specified. In presence of the algo, the bound is obtained by noting that the KL divergence term
KL(π‖π0) is minimized in expectation for π0 = EA[π]. The obtained KL(π‖EA[π]) can be
intuitively seen as a measure of variance in the induced hypothesis subclass by the algorithm A
which gives us a tighter bound

Theorem 3. With probability at least 1-δ over iid draws from Dn we have that the following holds
for all distributions π on FA induced by learning algorithm.

L(π) ≤ inf
λ>0.5

1

1− 1
2λ

(
L̂n(π) +

λ

N

(
KL(π‖EA[π]) + ln(

1

δ
)

))
(6)

However, the term EA[π] cannot be computed since the distribution of hypothesis under A in
unknown. The term can however be approximated as a weighted average of samples from the distri-
bution {fi}Ni=1, with weights wi = e

−NL(fi)
λ This bound can be further combined with inequalities

on this KL divergence to lead to a KL divergence independent bound, albeit vacuous.

5 Gaussian Process PAC-Bayesian bounds

Gaussian processes serve as a discriminative model (modelling conditional of labels given input) to
formalise prior knowledge about the task in order to develop data dependent complexity measures
for generalisation error[3]. Gaussian processes impose a non-parametric model over the label
distribution, such that distribution of labels given any finite subset of inputs is a gaussian[4].

The gaussian process is characterized by a kernel function K. Hence for given training data (X, Y )n

prior over hypothesis f is specified by the GP prior as π0 = N (0, KXX). The posterior π =

4
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N (KXXα,Σ) is also paramatrized by a gaussian where α,Σ are arbitrary. The final classification
is performed by a Gibbs classifier on GP output. Now,

KL(π‖π0) =

∫ [
−1

2
log

|Σ|
|KXX |

− 1

2
(f)TΣ−1(f) +

1

2
(f −KXXα)TK−1XX(f −KXXα)

]
×π0(f)df

(7)

= −1

2
log

|Σ|
|KXX |

− 1

2
tr
{
E[ffT ]Σ−1

}
+

1

2
E[(f −KXXα)TK−1XX(f −KXXα)] (8)

= −1

2
log

|Σ|
|KXX |

− 1

2
tr{In}+

1

2
(KXXα)TK−1XX(KXXα) +

1

2
tr{Σ−1KXX}−1 (9)

=
1

2
log |Σ−1KXX |+

1

2
tr{Σ−1KXX}−1 +

1

2
αTKXXα−

n

2
(10)

Plugging in the PAC-Bayesian bound by Cantoni we get our GP bound[5]

L(π) ≤ inf
λ>0.5

1

1− 1
2λ

(
L̂n(π) +

λ

N

(
1

2
log |Σ−1KXX |+

1

2
tr{Σ−1KXX}−1 +

1

2
αTKXXα−

n

2
+ ln(

1

δ
)

))
(11)

6 Experiment

As an attempt at adapting the generalisation bounds obtained for GP classification to different
domains, we apply the bounds on the problem of risk evaluation in localisation of an agent under
noisy controls. The hypothesis space F consists of distributions over R2. The input is a control U
in R2 which along with measurement generates a resultant distribution of the agent’s position over
the position space. The label Y associated with a position X is determined as a function of this
resultant distribution. Dataset (U, Y )n is generated for X by randomly sampling U and generating
labels. A Gaussian Process for generating these labels is now learnt over controls U with Radial
Basis Function (RBF) based Kernel. The risk associated with labelling X as the true position is
computed as risk in the GP learning process as well as negative classifications for highly probable
inputs.

The results exhibit a good detection of True positives, however, false positives are also highly
detected indicating that the bound is vacuous.

Case frequency (%)
High risk, False position(TP) 32
High risk, True position(FP) 27
Low risk, False position(FN) 18
Low risk, True position(TN) 23

Table evaluating the risk metric. Equal number of True and False positions.

7 Conclusion

In this report, we explored the PAC-Bayes framework as well as the various associated bounds and
applications. In particular, we analysed the application of the theorem to Gaussian Processes in a
classification setting. We adapted this bound for evaluating the risk associated with localisation
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Figure 1: Position distribution for a few different control samples

under noisy controls, and find that the risk bound has a bias towards detecting risk events, which is
also intuitive since this is an upper bound.
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