
On Sample Complexity of LQR

Pulkit Katdare
Department of Electrical and Computer Engineering

University of Illiinois at Urbana-Champaign
Urbana, IL 61801

katdare2@illinois.edu

Abstract

Deep Reinforcement learning has shown a lot of promises since it’s seminal paper
on Deep Q-networks. However, not a lot of theoretical framework exists in Deep
RL regime which provides some sort of a convergence guarantees. One of the
alternative that people came up with was Model-based RL, wherein part of the
algorithm tries to deal with understanding the model of the system and another
part tries to solve the optimization problem. In the main paper that we review here,
they have exploited the concepts of a model-based RL methods to solve an LQR
problem. Not only does the paper provide convergence guarantees of the estimation
of the model parameters, the paper also provides sample complexty guarantees to
learn this LQR

1 Introduction

Reinforcement learning is the science of learning decision making so that it minimizes some notion
of cumulative cost function. Reinforcement learning problems are generally defined as an MDP,
which is worthy of a mention here. An MDP is defined as a 6-tuple as follows,

MDP = (S,A, P, c, γ, S0) (1)

Where S is the state space of the MDP, A is the action space of the MDP, P is the (stochastic) model
of the system. S0 is the set of initial states of the MDP and for the understanding the γ and c, we
need to look the the optimization problem in Reinforcement learning which is defined as follows,

π∗ = E[

∞∑
t=0

γtc(st, at)|s0 ∼ S0, at = π(st)] (2)

Now getting back to the MDP, we defined one step cost of the taking action at at st as c(st, at) and γ
is the impact of future actions may have on the current optimization problem. Note that, the function
π(.) is called the policy function which spits action to take at state st. For someone with the control
theory background this is a very general background on how optimal control problems are posed,
which are going to be presenting next.

1.1 Linear Quadratic Regulator

After going through an MDP formulation consider a Control system where the state space is s ∈ Rn
and the action space a ∈ Rp and evolution of this control system proceeds as follows,

st+1 = f(st, at, wt) (3)

Here, st, at os the action taken at time t and wt is the uncertainty in the system (could be noise) and
the next state is st+1. Moving ahead, the objective of an optimal control problem is to minimize the

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

following cost function as follows,

(u∗0, u
∗
1, ...) = arg min

(u0,u1,...)

∞∑
t=0

c(st, at) (4)

In this particular paper that we are reviewing [1] wherein the authors assume that the model of system
is Linear and the cost is quadratic.

st+1 = Ast +Bat + wt (5)

c(st, at) = sTt Qst + aTt Rat (6)
In the main paper that we review, the algorithm proceeds in two parts. In the first part it tries to
estimate the matrix A and B and in the second part using the estimates of A and B it solves the
Linear Quadratic Regulator problem. Let us now proceed to the algorithm.

2 Related Work

2.1 Reinforcement learning applied to Linear Quadratic Regulator

Note that using MDPs to solve LQR problem isn’t a new thing in the Reinforcement learning literature.
One of the first approaches in this area was a 1993 paper [2] where in it is assumed that the system is
exactly linear in the LQR problem i.e

st+1 = Ast +But (7)
Note that is assumed that wt = 0. Under no noise condition it is a known fact that for LQR cost
function is quadratic is states as follows if the policy is linear in state, i.e π(s) = Ks

V (s) = sTUKs (8)
Let’s take a step back and define what value function exactly is. The value function of over state for a
particular policy is defined as follows,

VK(s) =

∞∑
t=0

γt(sTt Qst + aTt Rat)|s0 = s (9)

To solve this LQR problem, the paper uses Q-learning. Let us first understand the definition of the
Q-function which is as follows,

QK(s, a) = (sT0Qs0 + aT0 Ra0 +

∞∑
t=1

sTt Qst + aTt Rat|at = Kst, s0 = s, a0 = a) (10)

The Paper goes around to prove that the Q-function is quadratic in state and action spaces. Using
equation 9 we get the following result,

QK(s, a) = sTQs+ aTRa+ γVK(s)

= sTQs+ aTRa+ γ(As+Ba)TUK(As+Ba)

= sTQs+ aTRa+ γ((sTATUK + aTBTUK)(As+Ba)

= [s a]
T
[
Q 0
0 R

]
[s a] + γ([s a]

T
[
ATUKA ATUKB
BTUKA BTUKB

]
[s a])

= [s a]
T
[
Q+ γATUKA γATUKB
γBTUKA R+BTUKB

]
[s a]

T

= [s a]
T
HK [s a]

(11)

Since the matrixA andB are unknown to us even the matrixHK and UK are unknown to us. So, how
do we solve this problem. This paper essentially provides two algorithms around this problem. In the
first algorithm, the authors essentially estimate the matrix HK , ĤK for a certain K. After that, the
algorithm updates the policy using policy improvement step. Wherein Knew = −(ĤK)−221(ĤK)21

In the second algorithm [2] provides another algorithm for estimating the optimal K which is updated
on the go. Here, the paper tries to estimate the optimal Q-function Q∗ with changing the policy on
the go such that it finally converges to Q∗.

2

2.2 PAC Adaptive Control of Linear Systems

In this paper [3] the authors again try to solve an LQR problem for a linear system but this time the
system does have a zero mean noise added to it. The idea is to again come up with an algorithm
which is shown to be PAC learnable such that the the system learns an optimal policy. But the idea
of the algorithm is simple, first the algorithm estimates the matrix A and B using a linear regressor.
Then the algorithm tries to figure out the optimal control of this LQR problem using the estimates of
the matrix A and B that have been calculated.
First again define the Linear Control system that we know, which is as follows,

xt+1 = Axt +But + wt (12)
where, xt ∈ Rn and the control, ut ∈ Rp and the noise wt is such that,

E[wt] = 0 ∀t ≥ 0

Con(wk, wj) = σ2In1k=j ∀k, j ≥ 0
(13)

It is well-known fact that the solution of this LQR problem can be described by a Linear controller as
follows,

π∗(s) = −L∗s
L∗ = γ(γBTKB +R)−1BTKA

K = AT [γK − γ2KB(γBTKB +R)−1BTK]A+Q

(14)

Where, the third equation a.k.a can also be solved using Ricatti equation. To determine the regressor,
we first define the regressor variables, θ as follows,

θ = [B A]
T (15)

We also define a r = n+ p dimensional vector as follows,

ϕk =

[
uk
yk

]
(16)

If we define, yk = xTk then we get the following updates as follows,

yk+1 = ϕkθ + wTk (17)
Since, this is a Regression problem the optimal value of this least-squares regression can be described
as follows,

θ̂m = (ΦTmΦm)−1ΦTmYm (18)

Where, m =

y0
y1
.
.
ym

, Φm =

φ0
φ1
.
.
φm

 andWm =

w1

w2

.
,
wm

. For the estimation problem we need to update

the parameters iteratively with every new data point that comes in. But before doing that lets define
the following terms as follows,

Pm = Cov(ΦTm,Φm)−1 (19)

Cov(θ̂(i), θ̂(i)) = σ2Pm (20)
Thus, the iterative update in the θ with any new data point is as follows,

θ̂m = θ̂m + Pmϕm(ym − ϕmθ̂m−1) (21)
Even the matrix, Pm can be recursively updates as follows,

Pm = Pm−1 −
Pm−1ϕmϕ

T
mPm−1

1 + ϕTmPm−1ϕm
(22)

Putting it all together the algorithm looks something like this, Where, ūi(j) = 1j=i ∀j =
{1, 2, .., p}. Using these approach the authors propose a novel-algorithm wherein they prove PAC
learnability of this Linear system as follows,

Prob(
vπ

∗
(x)− vπ̂(x)

1 + ‖x‖2
< ε) ≥ 1− δ (23)

Given that the algorithm is run for M-number of steps which will be determined later. Where,
M = O(1

δε2).

3

3 Sample Complexity of the Linear Quadratic Regulator

The premise of this paper is very simple. Assuming that you have a Linear system which can be
defined as follows,

xt+1 = Axt +But + wt (24)

Where, the notation follows from the previous sections. The idea of this paper is to not only estimate
the matrix A and B with a reasonable accuracy but also to estimate the uncertainty in the estimation
and pose the optimization problem as a constrained optimization problem which are subject to
uncertainties. The paper also claims that the sample complexity to learn this particular kind of
controller can be bounded by O(log(1/δ)). So, let’s proceed ahead with this in mind. In the first step
of the algorithm the paper first estimates the matrix A and B. As seen in section 2.2 we saw a least
squares estimation to estimate A and B. But due to inability to prove rigorous bounds on A and B,
this paper uses a different kind of approach to estimate A and B. Using an identification procedure

Figure 1: system Identification algorithm

as described above we can estimate the accuracy of the estimation which can be bounded by O(1/δ).
We have the following theorem for the proof of this,
Theorem 1. ForN > 8(n+p)+16 log(4/δ) and assumingwt ∼ N (0, σ2

uIp) and ut ∼ N (0, σ2
nIn)

and x0 = 0. Then with probablity atleast 1− δ. The error in estimation of A and Â, B and B̂ can be
upper-bounded as follows,

‖Â−A‖ ≤ 16σw√
λmin(σ2

uGTG
∗
T + σ2

wFTF
∗
T)

√
(n+ 2p) log(36/δ)

N
(25)

‖B̂ −B‖ ≤ 16σw
σu

√
(n+ 2p) log(36/δ)

N
(26)

4

Where, GT = [AT−1B AT−2B ...B] and FT = [AT−1 AT−2 ...In]. And λmin is the mini-
mum eigen value which will always be positive.

To prove this theorem, consider the following Lemmas. We are going to accept this without proof for
now.
Lemma 1. For δ ∈ (0, 1) and N ≥ 2 log(1/δ). Let fk, gk ∈ Rm with f , g distributed as N (0,Σf)
and N (0,Σg). Then the following statement holds true with probability, 1− δ

‖
N∑
k=1

fkg
T
k ‖2 ≤ 4‖Σf‖1/22 ‖Σg‖

1/2
2

√
N(m+ n) log(9/δ) (27)

Lemma 2. If X ∈ RN×n are i.i.d with N (0, 1). Then with probability at least 1− δ√
λmin(XTX) ≥

√
N −

√
n−

√
2 log(1/δ) (28)

Using the first two lemma we can prove the following lemma which will help in the proof of the
system identification.
Lemma 3. Let z1, z2, ...zN ∈ Rn distributed as N (0,Σ). Let W ∈ RN×p distributed as N (0, σ2

w).
Let us define E = (ZTZ)†ZTW . Then if N ≥ 8n + 16 log(2/δ). For a fixed matrix, Q and
probablity 1− δ the following holds true.

‖QE‖2 ≤ 16σw‖QΣ−1/2‖2

√
(n+ p) log(18/δ)

N
(29)

Proof. Notice that if Z can be written as the following variable,

Z = Y Σ1/2 (30)

It is clear from the definition that Y ∼ N (0, 1). Using Lemma 2 we can conclude with probablity
atleast 1− δ/2 that√

λmin(Y TY) ≥
√
N −

√
n−

√
2 log(2/δ) =

√
N − (

√
n+

√
2 log(2/δ)) (31)

Now, it is a well known inequality in math that (a+ b)2 ≤ 2(a2 + b2). Thus, we have −(a+ b) ≥
−sqrt2(a2 + b2). substituting this in the above inequality we have the following,√
λmin(Y TY) ≥

√
N −

√
2n+ 4log(2/δ) =

√
N −

√
8n+ 16log(2/δ)

2
≥
√
N −

√
N/2 ≥

√
N/2

(32)

Using Lemma 1 combined with the above inequality we get the following upper-bound with probablity
atleast 1− δ/2

‖Y ∗W‖ ≤ 4σw
√
N(n+ p) log(18/δ) (33)

Assuming that the above two events are called ε1 and ε2. Then the probability of atleast on these
events occuring is atmost, δ (By union bound of probabilities). With probablity of atleast 1− δ that
none of these events would occur, we can state the following,

‖QE‖2 = Q(ZTZ)†ZTW = Q−1/2(Y ∗Y)−1Y ∗W (34)

Taking 2-norm on both sides and using above two inequalities and Lemma 1. we get the above
result.

Now, lets proceed to the proof of theorem 1.

Proof. (Theorem 1.) Since the estimation algorithm starts from x0 = 0 always with the control
inputs being normal, we can calculate this an say the following,[

xT
uT

]
∼ N (0,

[
σ2
uGTG

T
T + σ2

wFTF
T
T 0

0 σ2
uIp

]
(35)

5

Assume that we can define, zt =

[
xt
ut

]
. Let us define Θ = [A B]T . Using these things we have,

xTt = zTt Θ + wTt (36)

If we now define, X =

xT1
xT2
.
.
.
zTT

 , Z =

zT0
zT1
.
.
.

zTT−1

 and W =

wT1
wT2
.
.
.
wTT

 Thus, a single rollout can be written

in the matrix form as follows,
Z = XΘ +W (37)

Call XN , ZN ,WN such vertical stacked matrices of all such rollouts one after the another. Then the
following updates are also true

XN = ZNΘ +WN (38)
Thus, error of the least squares estimator can be written as follows,

E = Θ̂−Θ = (ZTNZN)−1ZTNWN (39)
Hence, using Lemma 3 and assuming the conditions of Lemma 3 and for QA = [In 0].

‖Â−A‖2 ≤
16σw√

λmin(σ2
uGTG

∗
T + σ2

wFTF
∗
T)

√
(n+ 2p) log(36/δ)

N
(40)

Similarly for Q = [0 Ip] we get,

‖B̂ −B‖ ≤ 16σw
σu

√
(n+ 2p) log(36/δ)

N
(41)

Hence Proved.

4 Estimating Model Uncertainity

Now, we have estimated the control matrix, A and B it is now time to re-write the optimal control
problem subject to these uncertainities. Let us write this down in mathematical form as follows,

minimize sup
‖∆A‖ ≤ εA
‖∆B‖ ≤ εB

E[

∞∑
t=0

xTt Qxt + uTt−1Rut−1]

subject to xt+1 = (Â+ ∆A)xt + (B̂ + ∆B)ut + wt

(42)

To solve this optimization problem we first need an estimate of εA and εB . Note that we do have
an upper-bound on the estimation from theorem 1. but because it is impossible to calculate this
upper bound as it involves terms the actual A and B matrices. Thus, to estimate this the paper uses a
boot-strapping framework as demonstrated in the algorithm below.

Figure 2: Estimating model uncertainty

6

Using existing framework for estimation using boot-strapping algorithms it can be easily proven that
the estimate, ε̂A and ε̂B provides the following guarantee

P(‖Â−A‖ ≤ ε̂A) ≥ 1− δ (43)

P(‖B̂ −B‖ ≤ ε̂B) ≥ 1− δ (44)

Since, we now have estimates of the matrix A and B along with their uncertainity estimation. We can
proceed now to solve this optimization problem. Note that the exact solution with zero uncertainties
is a know problemc in optimal control theory which is solved by much popular Ricatti equation. In
this robust optimization problem they borrowed one small thing from that method, i.e the optimal
control is a linear function of state u∗ = Kx∗. The authors try to solve this problem using a control
theory method called system level synthesis. We wiill go through this next and then comes the sample
complexity result.

5 System Level Synthesis

The main idea of System Level Synthesis is to cast this control problem in the transfer function
domain. The idea behind this is the fact that, this unconstrained optimization turns into a constrained
one. As mentioned in equation 35 the equation from xt can be written in normals such that,[

xk
uk

]
=

k∑
t=1

[
(A+BK)k−t

K(A+BK)k−t

]
wt−1 =

k∑
t=1

[
Φx(k − t+ 1)
Φu(k − t+ 1)

]
wt−1 (45)

It is very clear from the formulation that φx and φu should satisfy the following conditions as follows,

φx(k + 1) = Aφx(k) +Bφu(k) φx(1) = I (46)

Now, since we are converting this in transfer function domain we define,

Φx(z) =

∞∑
k=1

φx(k)z−k (47)

Thus, for this domain we have the following affine conditions that needs to be satisfied

[zI −A B]

[
Φx

Φu

]
= I (48)

Note that in this particular case, K = ΦuΦx
−1

Theorem 2. For ∀Φx,Φu the controller, K = ΦuΦx
−1 is internally stabilizing if the following

affine conditions are satisfied.

[zI −A B]

[
Φx

Φu

]
= I (49)

Theorem 3. Suppose the transfer matrices {Φx,Φu} satisfies

[zI −A B]

[
Φx

Φu

]
= I + ∆ (50)

If ‖∆‖ ≤ 1 then the controller K = ΦuΦx
−1 stabilizes the system (A,B)

Since in our problem, ∆A = A− Â and ∆B = B − B̂. Using this as our baseline we can recast our
optimization problem as follows,

min
φx,φu

σ2
w‖
[
Q1/2 0

0 R1/2

] [
φx

φu

]
‖2 such that equation 49 holds (51)

Given that this holds, the following theorem holds,

7

Theorem 4. If a controller K stabilizes (Â, B̂) and φx, φu is the corresponding system response
over estimated system. Suppose that if K stabilizes (A,B) too then the actual cost achived on this
system is as follows,

J(A,B,K) =
∥∥∥ [Q1/2 0

0 R1/2

] [
φx

φu

]
(I + [∆A ∆B]

[
Φx

Φu

]
)−1‖2 (52)

Now suppose ∆̂ = [∆A ∆B]

[
Φx

Φu

]
then a sufficient condition from theorem 3 to stabilize (A,B) is

that ‖∆̂‖∞ < 1

From the above theorem it is very clear that,

J(A,B,K) ≤ ‖(I + ∆̂)−1‖∞J(Â, B̂,K) ≤ 1

1− ‖∆̂‖∞
J(Â, B̂,K) (53)

Since, Â, B̂ are known to us, J(Â, B̂,K) can calculated by us. The only thing remaining is to
upper-bound ‖∆̂‖∞
Proposition 1. For any α ∈ (0, 1) and ∆̂, the following holds true.

‖∆̂‖∞ ≤

∥∥∥∥∥
[εA√

α
Φx

εB√
1−αΦu

]
= Hα(φx,Φu) (54)

Thus, we have the following bound for J(A,B,K) as follows,

J(A,B,K) ≤ 1

1−Hα(φx,Φu)
J(Â, B̂,K) (55)

Thus, it is very clear that we can convert the optimization problem

min
γ∈[0,1)

1

1− γ
min

Φx,Φu

∥∥∥ [Q1/2 0
0 R1/2

] [
φx

φu

]
‖2

s.t [zI −A B]

[
Φx

Φu

]
= I Hα(φx,Φu) ≤ γ

(56)

Using this optimization strategy subject to α = 0.5. We have the following relative error.
Theorem 5. Let J? be the optimal cost under the actual linear system (A,B). Let K? be the optimal
controller under these conditions. Let (Â, B̂) be the error in the estimates of the transition matrices
such that ‖∆A‖ ≤ εA and ‖∆B‖ ≤ εB . If the K is synthesized using optimization mentioned above .
Then with α = 0.5 the relative error can be bounded as follows,

J(A,B,K)− J?
J?

≤ 5(εA + εB‖K?‖2)‖RA+BK?‖∞ (57)

Using this theorem, we have the following sample complexity bound on the algorithm which is as
follows,
Result 1. Let λG = λmin(σ2

uGTG
T
T +σ2

wFTF
T
T) where FT and GT are as defined earlier. Suppose

we estimated A and B as described earlier (Â, B̂) and K is synthesized with α = 1/2. Then there
are universal constants, C0 and C1 such that

J(A,B,K)− J?
J?

≤ C0σw‖RA+BK?‖∞(
1√
λG

+
‖k?‖
σu

)

√
(n+ p) log(1/δ)

N
(58)

Then with probablity atleast 1− δ, N ≥ C1(n+ p)σ2
w‖RA+BK?‖2∞(1/λG + ‖K?‖22/σ2

u) log(1/δ)

6 Towards understanding model-free Reinforcement learning

There is an interesting criticism of the method that our main paper presents. It is the fact that modern
Reinforcement learning became popular because as a algorithmic designed we generally do-not have

8

any idea whatsoever about model of the system. In that sense, algorithms like those mentioned in this
paper defeats the purpose of the RL in general.
But all of this comes with a silver lining. We can use such an algorithm to understand how model-free
Reinforcement Learning works. For example, consider one of the popular DeepRL model-free
framework called Deep Deterministic Policy Gradient (DDPG) algorithm [4]. DDPG showed
almost magical results on some of the simple control/robotic environments like Inverted Pendulum.
For someone from the controls community it was magical because the algorithm without access to
any model whatsover of pendulum it was able to control the pendulum at its unstable equilibrium in
around 105 sample runs.
One of the possible explanations given at the time is that RL algorithm perform an efficient but
random search over policy space to converge to optimal policy. Another possible explanation that
is possible maybe just maybe deep RL algorithms are able learn some kind of model of the system.
If this hypothesis turns out to be true then it possible for us to get a better and different insight into
neural networks that it is known to us. Here are some of the experimental setups that we propose for
our experimentation.
In our first set of experiments we run a standard RL algorithm like DDPG on a linear system under
zero noise condition. We wish to compare this framework with the solution obtained by solving the
Riccati equation. In the second set of experiments we want to compare the solution to one obtained
using the paper that we reviewed hoping that we may be able to find a common model for comparison
for the two algorithms.

7 Experimental results and Further Work

7.1 No Noise condition

Under no noise condition we tested a DDPG algorithm for 1, 5, 10, 15, 20 dimensional Linear System
with the matrix A,B such that the system is controllable. For comparison metric, we considered
Riccati equation solution for computing actual optimal control value and for the RL implementation
we kept γ = 1.0. Note that even though there is no noise in the model, there is an exploration noise
in the policy training steps.

Dimensions ‖K? − K̂‖∞
1 5.01
5 0.89
10 ∼ 400
15 ∼ 6000
20 ∼ 7000

AS we can see from the table under noise-less condition, the model-free framework is off by the
actual policy by around 103 order of magnitude for large dimensions. This comes as a surprise
because the LQR problem doesn’t have a local minima it only has a global minima for the system
to converge to. Our best guess for this not working is we believe the approximating capabilities of
Neural Networks. From Universal Function approximation theorem Neural networks were shown to
approximate any function subject to the fact that the network has sufficient number of weights.
Now for an LQR problem, the critic function will be quadratic in [x a]. Since, the Neural net based
critic is approximating this actual critic function it could be something like this

9

Figure 3: Approximating Critic

Now, if the critic looks something like this then the policy gradient that this algorithm relies on to
train the policy [5] is something as follows,

∇θπQ = ∇aQ̂(s, a)|a=π(s)∇θππ (59)
Since, the critic is in itself approximating but since the direction of gradient could be different that
the actual actual gradient this will go on to learn a different policy. Thus, we have a different answer
about the optimal policy.

A further question this entails would be around how do we go about approximating the critic function
such that the form of the approximating critic shifted by a small amount but the structure of the
curve looks same. This will ensure that atleast the direction of policy gradient is correct and the
convergence will end up near the optimal policy.

References
[1] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for

robust adaptive control of the linear quadratic regulator. CoRR, abs/1805.09388, 2018.

[2] Steven J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In In Advances
in Neural Information Processing Systems 5, pages 295–302. Morgan Kaufmann, 1993.

[3] Claude-Nicolas Fiechter. PAC adaptive control of linear systems. In Proceedings of the Tenth
Annual Conference on Computational Learning Theory, COLT 1997, Nashville, Tennessee, USA,
July 6-9, 1997., pages 72–80, 1997.

[4] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

[5] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31th International Conference
on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 387–395, 2014.

10

	Introduction
	Linear Quadratic Regulator

	Related Work
	Reinforcement learning applied to Linear Quadratic Regulator
	PAC Adaptive Control of Linear Systems

	Sample Complexity of the Linear Quadratic Regulator
	Estimating Model Uncertainity
	System Level Synthesis
	Towards understanding model-free Reinforcement learning
	Experimental results and Further Work
	No Noise condition

