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1 Abstract

In this project, we introduce the work [3] that shows the generalization bound of an uniform stable algo-
rithm using differential privacy algorithm and stability argument [8] to bound the tail distribution. This
method substantially improve the generalization bound [1] using the stability assumption and McDiarmid’s
inequality. In particular, the authors prove that the generalization error of a γ-uniformly stable algorithm
can be improved from O((γ+1/n)

√
n ln(1/δ)) with probability at least 1− δ to O(

√
(γ + 1/n) ln(1/δ)) with

probability at least 1− δ without any further assumptions. In addition, this work also show a tighter second
moment that is in the order of O(γ + 1/n) compared to O(γ + 1/n)in the previous work [1].

2 Introduction

Generalization bound can be used to show the consistency of the strongly convex ERM algorithm [7], the
uniform stability of the gradient descent algorithm on smooth convex function [5], and the estimation of the
prediction error of deferentially private prediction [2]. The generalization bound is a useful tool to show the
learnability of the algorithm without showing the uniform convergence of empirical means (UCEM) property,
which is the sufficient condition for consistency of the learning algorithm but not a necessary condition for
all learning algorithms.
An common approach to proving the generalization bound is to analyze the stability of the learning algo-
rithm with respect to a change in the dataset. In this work, the author takes this approach to show the
generalization bound. Furthermore, the generalization bound proved in this work matches the order of that
using second moment estimation and Chebyshev’s inequality in [1]. At the same time, the generalization
bound produced by the second moment bound introduced in this paper matches the one produced by the first
moment estimation [7] and the Markov inequality in the strongly convex function setting. The techniques
here are to use the property of differential privacy to show the upper bound and the lower bound of the
expectation of the generalization error. Since the learning algorithm A(S) may not be an ε-differentially pri-
vate algorithm, the authors introduce a new learning algorithm G(S) that takes the input of a multidataset
Zm×n which is composed of m rows and n columns, the expected value of the generalization error of each
row as scoring functions. Then the algorithm G(S) outputs an index k ∈ [m] with probability proportional
eεgk(S)/2∆, where gk(S) is the scoring function of row k ε is the parameter that is positive and ∆ is the
stability of the expectation of the generalization error. It can be shown that G(S) is an ε-differentially
private algorithm. Putting all the ingredients together, the upper bound and the lower bound of the expec-
tation of the generalization error using learning algorithm A(S) can be shown. In the following stage, the
stability argument [8] is employed to bound the tail distribution of the generalization error to show the high
probability result.

3 Preliminaries

In this section, we introduce some basic properties that are later used in the proofs of the generalization
bound.
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Definition 3.1. A learning algorithm A : Zn → F is γ-uniformly stable if for all S, S′ ∈ Zn, where S, S′

differs in only one sample and z ∈ Z,
∣∣`(A(S), z

)
− `
(
A(S′), z

)∣∣ ≤ γ
Definition 3.2. A function f : Zn → R has sensitivity at most γ if for all S, S′ ∈ Zn, where S, S′ differs in
only one sample,

∣∣f(S)− f(S′)| ≤ γ

Definition 3.3. A learning algorithm A : Zn → F is ε-differentially private if for any measurable subset E
of F for all S, S′ ∈ Zn, where S, S′ differs in only one sample, P{A(S) ∈ E} ≤ eεP{A(S′) ∈ E}

Lemma 3.1. Let A : Zn → F and ` : F × Z → [0, 1] with uniform stability γ. P denotes the probability
distribution over Z, a multi-dataset S ∈ Zm×n, where Sk, ∀k ∈ [m] is the k-th row of the dataset, then we
define a scoring function gk(S)

gk(S) = Ez∼P

[
`
(
A(Sk), z

)]
− 1

n

n∑
j=1

`
(
A(Sk), Skj

)
gk(S) has sensitivity 2γ + 1

n

The following property will be used in bounding the tail of the generalization error in replacement of the
McDiarmid’s inequality.

Lemma 3.2. [8] Let Q be a probability distribution over real number R. Then,

Pv∼Q

{
v ≥ 2Ev1,..,vm∼Q

[
max{0, v1, v2, .., vm}

]}
≤ ln 2

m

Here v1, v2, .., vm are drawn independent and identically from the distribution Q.

Check [8] for the detailed proof.

4 Algorithm

4.1 Generalization Bound

To construct a ε-differentially private algorithm onto the existing learning framework A(S), we consider the
following setting:

Theorem 4.1. [6] Let g1, g2, ..., gm : Zn → R be m scoring functions such that |gi(S) − gi(S′)| ≤ ∆ =
2γ+ 1

n , ∀i ∈ [m], where S, S′ ∈ Zn differ from only one sample. Given inputs S ∈ Zn and a parameter ε > 0,

G is the algorithm that outputs an index k ∈ [m] with probability P{G(S) = k} =
exp( ε

2∆ gk(S))∑
i∈[m] exp( ε

2∆ gi(S)) . Then

G is ε-differentially private algorithm and for every S ∈ Zn:

EP{G(S)=k}
[
gk(S)

]
≥ max
k∈[m]

{
gk(S)

}
− 2∆

ε
lnm

Proof. First show that G(S) is ε-differentially private algorithm.

P{G(S) = k} =
exp

(
ε

2∆gk(S)
)∑

i∈[m] exp
(
ε

2∆gi(S)
) , P{G(S′) = k} =

exp
(
ε

2∆gk(S′)
)∑

i∈[m] exp
(
ε

2∆gi(S
′)
)

P{G(S) = k}
P{G(S′) = k}

=

∑
i∈[m] exp

(
ε

2∆gi(S
′)
)∑

i∈[m] exp
(
ε

2∆gi(S)
) exp

(
ε

2∆

(
gk(S)− gk(S′)

))

≤
∑
i∈[m] exp

(
ε

2∆

∣∣gi(S′)− gi(S)
∣∣+ gi(S)

)∑
i∈[m] exp

(
ε

2∆gi(S)
) exp

(
ε

2∆

∣∣gk(S)− gk(S′)
∣∣)

≤ exp(
ε

2
) exp(

ε

2
) = exp(ε)
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Let C =
∑
i∈[m] exp

(
ε

2∆gi(S)
)
, then gk(S) = 2∆

ε

(
lnC + lnP{G(S) = k}

)
E[gk(S)] =

∑
i∈[m]

P{G(S) = i}2∆

ε

(
lnC + lnP{G(S) = k}

)
=

2∆

ε

(
lnC −H

(
G(S)

))
Here H

(
G(S)

)
is the entropy of G(S) and H(G(S)) ≤ ln(m). Moreover, 2∆

ε lnC ≥ maxk∈[m] gk(S). Here
completes the proof.

Now, since G(S) is an ε-differentially private algorithm, we can use this property to show the following
bound.

Lemma 4.2. Let A : Zn → F and ` : F × Z → [0, 1] with uniform stability γ. Let G : Zm×n → [m] be an
ε-differentially private algorithm. Then for any distribution P over Z,

Vs = ES∼Pmn,P{G(S)=k}

[ 1

n

n∑
j=1

`
(
A(Sk), Skj

)]
e−εVs − γ ≤ ES∼Pmn,z∼P,P{G(S)=k}

[
`
(
A(Sk), z

)]
≤ eεVs + γ

We are now able to prove the following bound using above ingredients.

P

{
S : Zn : Ez∼P

[
`
(
A(S), z

)]
− 1

n

n∑
j=1

`
(
A(S), Sj

)
≥
√(

2γ +
1

n

)
ln

8

δ

}
≤ δ (1)

Proof. To prove (1), we utilize Lemma 3.1 and Lemma 4.2 to find the upper bound of ES∼P(m+1)n

[
EP{k=G(S)}

[
gk(S)

]]
and then use Theorem 4.1 and Lemma 3.2 to bound the tail of the (1). Consider the following setting: choose
m = ln 2

δ and consider an extra scoring function gm+1(S) such that gm+1(S) = 0 for any S ∈ Zn. The setting
of an extra scoring function is to guarantee that maxk∈[m+1] gk(S) is always equal or greater than zero, then
we can use Lemma 3.2 to bound the tail. By Lemma 4.2,

ES∼P(m+1)n

[
EP{k=G(S)}

[
gk(S)

]]
= ES∼P(m+1)n,P{k=G(S)}

[
Ez∼P

[
`(A(Sk), z)

]
− 1

n

n∑
j=1

`(A(Sk), Skj)
]

≤ eε − 1 + γ

Plugging into Theorem 4.1,

ES∼Pmn

[
max

{
0, max
k∈[m]

Ez∼P
[
`(A(Sk), z)

]
− 1

n

n∑
j=1

`
(
A(Sk), Skj

)}]
= ES∼P(m+1)n

[
max

k∈[m+1]
gk(S)

]
≤ ES∼P(m+1)n

[
EP{k=G(S)}

[
gk(S)

]]
+

2(2γ + 1
n )

ε
≤ eε − 1 + γ +

4γ + 2
n

ε
ln(m+ 1)

Choose ε =
√

(2γ + 1
n ) ln(m+ 1) =

√
(2γ + 1

n ) ln(e ln(2)/δ). Therefore, the bound is at least 2ε. Moreover,

(eε − 1) ≤ 2ε for 0 ≤ ε ≤ 1.26 and γ ≤ √γ for 0 ≤ γ ≤ 1. Then, the following inequality holds,

4

√(
2γ +

1

n

)
ln

2

δ
+ γ ≤ 4

√(
2γ +

1

n

)
ln

8

δ

Then, plugging into Lemma 3.2, we can obtain the following upper bound:

PS∼Pn

{
Ez∼P

[
`
(
A(S), z

)]
− 1

n

n∑
j=1

`(A(S), Sj) ≥ 8

√(
2γ +

1

n

)
ln

8

δ

}

≤ PS∼Pn
{
Ez∼P

[
`
(
A(S), z

)]
− 1

n

n∑
j=1

`(A(S), Sj) ≥ 2ES∼P(m+1)n

[
max

k∈[m+1]
gk(Sk)

]}
≤ δ
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Since gk(S),∀k ∈ [m], S ∈ Zn has a bounded difference c = 4γ + 1
n and ES∼Pn [gk(S)] ≤ 2γ∀k, we can also

obtian the upper bound by using McDiarmid’s inequality,

P

{
S : Zn : Ez∼P

[
`
(
A(S), z

)]
− 1

n

n∑
j=1

`
(
A(S), Sj

)
≥
(

4γ +
1

n

)√n ln( 1
δ )

2
+ 2γ

}
≤ δ (2)

Comparing equation (1) and (2), the first states that the generalization error is within O
(√

(γ + 1
n ) ln 1

δ

)
with probability 1 − δ and the latter shows that the error is within O

((
γ + 1

n

)√
n ln 1

δ

)
with probability

1− δ.

4.2 Second Moment Estimation

Lemma 4.3. Let L : Zn × Z → [−1, 1] be a function with uniform stability γL and S(j) be a copy of the
dataset S ∈ Zn with the j-th component replaced by z ∼ P. Then,

ES∼Pn
[( 1

n

n∑
j=1

L(S(j), Sj)
)2] ≤ γ2

L +
1

n

ES∼Pn

[(
Ez∼P

[
`
(
A(S), z

)]
− 1

n

n∑
j=1

`
(
A(S), Sj

))2
]
≤ 16γ2 +

2

n
(3)

Proof. To show that equation (3) holds true, we first define L(S, z) := `
(
A(S), z

)
− Ez∼P

[
`(A(S), z)

]
L ∈

[−1, 1], which is an unbiased estimator of P. Here, L has stability 2γ and Ez∼P

[
`
(
A(S), z

)]
− 1
n

∑n
j=1 `

(
A(S), Sj

)
=

− 1
n

∑n
j=1 L(S, Sj). Therefore, the second moment of the LHS is equivalent to ES∼Pn

[(
1
n

∑n
j=1 L(S, Sj)

)2]
.

∣∣∣ 1
n

n∑
j=1

L(S, Sj)− Ez∼P
[ 1

n

n∑
j=1

L(S(j)←z, Sj)
]∣∣∣ ≤ 1

n

n∑
j=1

Ez∼P
[∣∣L(S, Sj)− L(S(j)←z, Sj)

∣∣] ≤ 2γ

From Lemma 4.3, we know that ES∼Pn
[(

1
n

∑n
j=1 L(S(j), Sj)

)2] ≤ (2γ)2 + 1
n . Then,

ES∼Pn

[( 1

n

n∑
j=1

L(S, Sj)
)2
]

= ES∼Pn

[( 1

n

n∑
j=1

L(S, Sj)− L(S(j), Sj) + L(S(j), Sj)
)2
]

≤ 2ES∼Pn
[( 1

n

n∑
j=1

L(S(j), Sj)
)2]

+ 2ES∼Pn
[( 1

n

n∑
j=1

L(S, Sj)− L(S(j), Sj)
)2]

≤ 2
(

(2γ)2 +
1

n

)
+ 2(2γ)2 = 16γ2 +

2

n

This give a tight bound of the second moment O(γ2 + 1
n ) compared with the former work [1] which demon-

strates that the second moment is O(γ + 1
n ). Then, an alternative bound for the tail distribution is to use

Chebyshev’s inequality which requires the estimation of second moment.

5 Application

In this section, the bounds (1), (3) shown in the previous section are applied to application examples discussed
in class.
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5.1 Learning without Uniform Convergence

Theorem 5.1. [4] Let F is a convex subset of a Hilbert space H, and `(f, z), z ∈ Z f ∈ F is a m-strongly

convex and L-Lipschitz function, which has stability at most 2L2

mn . Then, with probability 1− δ

Ez∼P
[
`(f̂n, z)

]
− Ez∼P

[
`(f∗, z)

]
≤ 2L2

δmn

where f̂n is the empirical risk minimizer and f∗ is the true risk minimizer.

In the setting of Theorem 5.1, we can apply Chebyshev’s inequality to equation (3) and obtain the following
bounds.

Ps∼Pn

{
S ∈ Zn : Ez∼P

[
`(f̂n, z)

]
− Ez∼P [`(f∗, z)] ≥ c1

(
L2

√
δmn

+
1√
δn

)}
≤ δ (4)

Since 1√
δ

√
16
(

2L2

mn

)2
+ 2

n ≤
1√
δ

(
8L2

mn +
√

2
n

)
, choosing c1 ≥ 8 should be suffice. Similarly, we can obtain the

upper bound by equation (1) and get the following:

Ps∼Pn

S ∈ Zn : Ez∼P

[
`(f̂n, z)

]
− Ez∼P [`(f∗, z)] ≥ c2L

√
ln 1

δ

mn

 ≤ δ (5)

If m
L2 < 1, here c2 48 is sufficient. When the loss function ` is not m-strongly convex, we can add a regularizer

term λ
2 ‖f‖

2 to make it λ-strongly convex. In this case, choosing λ = c√√
δn

using the second moment and

λ = c

n
2
3

using the high probability result leads to following result:

Ps∼Pn

{
S ∈ Zn : Ez∼P

[
`(f̂n, z)

]
− Ez∼P [`(f∗, z)] ≥ c1

(
L2

δ
1
4
√
n

)}
≤ δ (6)

Ps∼Pn

S ∈ Zn : Ez∼P

[
`(f̂n, z)

]
− Ez∼P [`(f∗, z)] ≥ c2L

√
ln 1

δ

n
1
3

 ≤ δ (7)

6 Conclusion

This paper prove a better upper bound of the generalization error. Previous work [1] shows the generalization
error of γ-uniformly stable algorithm lies in the interval of order O((γ + 1/n)

√
n ln(1/δ)) which will not be

a meaningful bound when γ ≥ 1/
√
n and works optimal when γ is in the order of O(1/n). This work greatly

improve the bound to O(
√

(γ + 1/n) ln(1/δ)) using differentially private algorithm and stability argument.
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