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1 Abstract
This project presents a Fock space framework for identification and modeling of nonlinear systems
by Volterra series. By representing approximation models as elements in a Fock space, which is a
reproducing kernel Hilbert space (RKHS), least squares regression can be performed to learn the
original system dynamics from a collection of input-output sample pairs. The resulting expression
can be easily adjusted to incorporate a priori knowledge of the order of nonlinear effects such as
distortion, harmonic generation, and asymmetric/aperiodic oscillations, and is optimal in the sense
that it is a projection in a Hilbert space of operators (orthogonality principle).

2 Volterra Series for Modeling Nonlinear Operators
Consider a nonlinear operator H : L2[0, T ]→ C[0, T ] which we wish to model. Alternative input
spaces can be considered, but restricting inputs to L2 enables approximation schemes with convenient
structural properties which will be seen later. One approach to approximating the output of H is to
construct a Volterra series, which is defined as follows.

Definition 2.1. A Volterra series is a functional Ĥt : L2[0, T ]→ R which models the output of a
nonlinear operator at time t of the form

Ĥtu = h0(t) +
∞∑
n=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(t, τ1, . . . , τn)
n∏
i=1

u(τi)dτi (1)

where hn : Rn+1 → R is called the n-th order Volterra kernel. We call the operator Ĥ : L2[0, T ]→
C[0, T ] given by Ĥu(t) = Ĥtu for t ∈ [0, T ] the corresponding Volterra operator.

Notice that if the original operator H is causal, we can truncate the upper limits of the integrals
in the Volterra series definition from ∞ to t because the desired Volterra kernels must satisfy
hn(s, . . . ) = 0 for s > t to preserve causality. Volterra series generalize the convolution description of
linear operators to nonlinear operators analogously to how Taylor series generalize linear interpolation
of real-valued functions to nonlinear functions. In a sense, a Volterra series can be viewed as a
Taylor series on L2 (rather than R) with scalar coefficients replaced by linear integral operators on
tensor products of L2.

The value of Volterra series and Volterra operators depends on their capability to uniformly
approximate a large class of nonlinear operators. If there exists an operator that satisfies the desired
assumptions but cannot be uniformly approximated arbitrarily accurately by a Volterra operator,
than it would be unfruitful to consider this modeling scheme much further. However, the algebra
of Volterra series functionals defined on a compact set K ⊂ L2[0, T ] (which is a Hausdorff space)
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separates points and vanishes nowhere, so by the Stone-Weierstrass theorem, this algebra is dense
in the continuous functions C(K,R). The relatively straightforward proof of this result is shown
in [W. J. Rugh, 1981]. Furthermore, if H satisfies a condition called fading memory (which will
not be defined here but essentially states that the output of H at time t only depends strongly on
values of the input in the recent past and depends very weakly on values of the input in the distant
past), this approximation can be extended to hold for all bounded Lipschitz inputs and all t ∈ R,
which is shown in [S. Boyd & L. Chua, 1985]. As a remark, the set of bounded Lipschitz inputs is
not compact in L2(R) with respect to either the sup norm or the L2 norm, but it is compact with
respect to a special time-weighted norm defined in [S. Boyd & L. Chua, 1985]. However, bounded
Lipschitz inputs are compact in L2[0, T ], which follows from the Arzela-Ascoli theorem.

For the purposes of this project, we will only consider approximation over a finite time interval
[0, T ], but it is not extremely difficult to extend this to R under the assumption that H has fading
memory. These results show that Volterra series and Volterra operators are in fact good models for
nonlinear systems in the sense that the output of any nonlinear operator defined on a compact set
K ⊂ L2[0, T ] can be uniformly approximated to arbitrary tolerance by some Volterra series. The
problem now becomes learning the kernels for this Volterra series.

3 Learning Volterra Kernels
The learning problem can be formulated as follows. Let H : L2[0, T ]→ C[0, T ] be a causal continuous
nonlinear operator. It is desired to approximate H over a finite time interval [0, T ] by a Volterra
operator Ĥ. That is, for any input u ∈ L2[0, T ] and time t ∈ [0, T ], we wish to construct an
approximation for the output of the system at time t, y(t) = Hu(t), with a Volterra series having
kernels (hn)∞n=0. The training data consist of input-output pairs (uj , yj)mj=1 ⊂ L2[0, T ] × C[0, T ],
where yj is the output of the system H corresponding to input uj . As will be seen later, it is
convenient to use empirical risk minimization (ERM) with the empirical risk defined as the worst
case (over t) average quadratic loss given by

Lm(Ĥ) = sup
t∈[0,T ]

1
m

m∑
j=1

(yj(t)− Ĥuj(t))2 (2)

Before looking more closely at ERM, we will review two previous methods for learning Volterra
kernels based on signal processing techniques and identify some disadvantages to these approaches.

3.1 Crosscorrelation and Multiple-Variance Method

Similar to how monomials are not orthogonal with respect to the L2-inner product, the basis
functionals H(n)

t given by u 7→
∫ t
−∞ · · ·

∫ t
−∞ hn(t, τ1, . . . , τn)

∏n
i=1 u(τi)dτi are not orthogonal in the

sense that the outputs of these basis functionals are not uncorrelated when subject to stationary
white Gaussian noise input. The crosscorrelaton method as developed in [Y. Lee & M. Schetzen, 1965]
orthgonalizes these basis functionals via a Gram-Schmidt-like orthogonalization procedure to produce
a set of orthogonal functionals {G(n)

t }∞n=0 that when summed, are referred to as a Weiner series.
Naturally, we have that the output of the modeled system satisfies y(t) =

∑∞
n=0H

(n)
t u =

∑∞
n=0G

(n)
t u.

The orthogonality of Weiner functionals can be stated more precisely as follows. Let w(t) be
stationary white Gaussian noise with mean zero and variance σ2. Then the outputs of the original
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basis functionals and orthogonalized Weiner functionals satisfy

E[(H(n)
t w)(G(n′)

t w)] = 0, n < n′ (3)

E[(H(n)
t w)(G(n′)

t w)] = 0, n 6= n′ (4)

Let the functionals H(n)
t and G(n)

t be associated with kernels hn and gn, respectively. Using this
orthogonality condition, one can derive the expressions for the Wiener kernels gn to be

gn(t, τ1, . . . , τn) = E[y(t)x(t− τ1) · · ·x(t− τn)]
σ2nn! (5)

for the off-diagonal (i.e., τi 6= τi′ for all i 6= i′) elements, and

gn(t, τ1, . . . , τn) =
E[(y(t)−

∑n−1
n′=0G

(n′)
t w)x(t− τ1) · · ·x(t− τn)]
σ2nn! (6)

for the diagonal elements (i.e., τi = τi′ for some two (or more) i, i′). These Wiener kernels gn can
then be rearranged via a linear combination to form the desired Volterra kernels hn, and these
expressions are derived in [Y. Lee & M. Schetzen, 1965].

Notice that the output kernels depend on the variance of the input noise. Input noise with
high variance excites higher order nonlinearities more so than small variance input, and vice versa
for lower order nonlinearities. To obtain more accurate kernels, it is advantageous to adapt the
variance of the input noise to suit the order of the kernel being estimated, using small variance noise
for lower order kernels and high variance noise for higher order kernels. This is referred to as the
multiple-variance method. Implementing this approach to the previous crosscorrelation method
modified formulas for the Wiener kernels, which are derived in [S. Orchioni, 2014] and will not be
listed here, but have similar form to the equations above with some additional off-diagonal terms
inside the expectation.

One primary disadvantage to both of these methods is the requirement for restrictively large
sample sizes for acceptable convergence (even more so for high dimensional input spaces), often
exceeding tens of thousands of input-output pairs [M. Franz & B. Schölkopf, 2006]. Other disadvan-
tages include the requirement that the input be Gaussian noise (which cannot be created perfectly
in experiment, leading to unavoidable estimation errors), and the assumption that the output is
noise-free (any disturbance in the measured output will be modeled).

3.2 Fock Space Framework and RKHS Kernel Trick

Using kernel methods can overcome all three of the difficulties mentioned in the previous section.
The following Fock space framework for continuous-time system identification and regression in
a reproducing kernel Hilbert space (RKHS) is introduced in [L. V. Zyla, &R. J. P. deFigueiredo,
1983] and further developed in [R. J. P. deFigueiredo & T. A. W. Dwyer, 1980]. The same approach
for discrete-time systems is also considered in [M. Franz & B. Schölkopf, 2006] with additional
comments on time and memory complexity.

Definition 3.1. A Fock space is a direct sum of tensor products of identical copies of a Hilbert
space, given by

F (L2[0, T ]) =
∞⊕
n=0

L2[0, T ]⊗n

= R⊕ L2[0, T ]⊕ (L2[0, T ]⊗ L2[0, T ])⊕ . . .
(7)
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Since the direct sum of Hilbert spaces remains a Hilbert space, the tensor product of Hilbert
spaces remains a Hilbert space, and L2[0, T ] is a Hilbert space, it follows that F (L2[0, T ]) is also
a Hilbert space. Note that elements in F (L2[0, T ]) are given by sequences (hn)∞n=0 such that for
each fixed t and n, hn(t, . . . ) ∈ L2[0, T ]⊗n. (An additional summability condition also needs to be
satisfied, and this will be discussed in a few sentences.)

Suppose Gt and Ht are Volterra series functionals. By the Riesz representation theorem applied
to each L2[0, T ]⊗n, Gt and Ht can be represented by elements (gn)∞n=0 and (hn)∞n=0, respectively, in
F (L2[0, T ]) satisfying the relation given in the definition of a Volterra series. Therefore, Volterra
series functionals are also elements of the Fock space F (L2[0, T ]) (because Hilbert spaces are
self-dual). We can define the Fock space inner product of two Volterra series functionals by

〈Gt, Ht〉F (L2[0,T ]) =
∞∑
n=0

1
n!〈gn, hn〉

n
L2[0,T ]⊗n

=
∞∑
n=0

1
n!

∫ T

0
· · ·
∫ T

0
gn(t, τ1, . . . , τn)hn(t, τ1, . . . , τn)dτ1 · · · dτn

(8)

The induced Fock space norm is then given by

‖Ht‖F (L2[0,T ]) =
∞∑
n=0

1
n!‖hn‖

n
L2[0,T ]⊗n

=
∞∑
n=0

1
n!

∫ T

0
· · ·
∫ T

0
|hn(t, τ1, . . . , τn)|2dτ1 · · · dτn <∞

(9)

where the finiteness of this sum is the required summability condition mentioned earlier.
From here, we introduce the weighted Fock space Fρ(L2[0, T ]) for any bounded positive sequence

ρ = {ρ0, ρ1, . . . }. The sequence ρ is to incorporate any a priori knowledge of the original system to
be modeled by weighting the orders of the nonlinearities, somewhat similarly to the weighting of
the input noise variance in the multiple-variance method to suit the order of the nonlinearity. This
new space is defined exactly as before, except the new inner product and norm are now given by

〈Gt, Ht〉Fρ(L2[0,T ]) =
∞∑
n=0

ρn
n! 〈gn, hn〉

n
L2[0,T ]⊗n

=
∞∑
n=0

ρn
n!

∫ T

0
· · ·
∫ T

0
gn(t, τ1, . . . , τn)hn(t, τ1, . . . , τn)dτ1 · · · dτn

(10)

We can define the induced Fock space norm by

‖Ht‖F (L2[0,T ]) =
∞∑
n=0

ρn
n! ‖hn‖

n
L2[0,T ]⊗n

=
∞∑
n=0

ρn
n!

∫ T

0
· · ·
∫ T

0
|hn(t, τ1, . . . , τn)|2dτ1 · · · dτn <∞

(11)

It is quite easy to see that Fρ(L2[0, T ]) is an RKHS. The associated Mercer kernel Kρ : L2[0, T ]×
L2[0, T ]→ R is given by

Kρ(u, v) =
∞∑
n=0

1
ρnn!〈u, v〉

n
L2[0,T ] (12)
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By equation (10), for any input u ∈ L2[0, T ], the element Ht ∈ Fρ(L2[0, T ]) can be expressed as the
inner product

Htu = 〈Kρ(u, ·), Ht〉Fρ(L2[0,T ]) (13)

which shows that Fρ(L2[0, T ]) is an RKHS.
Now that it has been estabished that the space of Volterra series functionals is an RKHS, we

can express the data as projections of the output of the original operator H at time t along the
representation of the inputs in Fρ(L2[0, T ]). From now on, we will represent the Volterra series
functional Ht by the output of the corresponding Volterra operator evaluated at time t, given by
Ĥ(·)(t). Trivially, the data (uj , yj)mj=1 necessarily satisfy

H(uj
∣∣∣
[0,t]

)(t) = yj(t), 1 ≤ j ≤ m, t ∈ [0, T ] (14)

where the restriction is to ensure the resulting Volterra operator Ĥ will be causal. Since each input
uj is represented by a Mercer kernel Kρ(uj , ·) ∈ Fρ(L2[0, T ]), considering the projection of H(·)(t)
along the input representors in Fρ(L2[0, T ]) gives the following equivalent form for equation (14).

〈Kρ(uj
∣∣∣
[0,t]

, ·), H(·)(t)〉Fρ(L2[0,T ]) = yj(t), 1 ≤ j ≤ m, t ∈ [0, T ] (15)

From the Hilbert space projection theorem (a.k.a., orthogonality principle), for any point H(·)(t)
in Fρ(L2[0, T ]), there is a unique point Ĥ(·)(t) in the closed subspace C spanned by the input
representors (Kρ(uj

∣∣∣
[0,t]

, ·))mj=1 which minimizes the distance
∥∥∥H(·)(t)− Ĥ(·)(t)

∥∥∥
Fρ(L2[0,T ])

over C.

Furthermore, the error vector H(·)(t) − Ĥ(·)(t) is orthogonal to every element in C. Note that
if H(·)(t) cannot be expressed as an element in Fρ(L2[0, T ]) itself, there exists an element in
Fρ(L2[0, T ]) arbitrarily close to H(·)(t), as mentioned in section 2. The optimal approximation
Ĥ(·)(t) is the projection of H(·)(t) onto the closed span of (Kρ(uj

∣∣∣
[0,t]

, ·))mj=1, hence the output of

Ĥ at time t for input v can be written as the linear combination

Ĥ(v)(t) =
m∑
j=1

cj(t)Kρ(uj
∣∣∣
[0,t]

, v) (16)

It remains to solve for the coefficients (cj(t))mj=1 for each time t, which are obtained via the
equation

c(t) = G−1(t)y(t) (17)

where the Gramian matrix G(t) ∈ Rm×m has elements Gij = 〈Kρ(ui
∣∣∣
[0,t]

, ·),Kρ(ui
∣∣∣
[0,t]

, ·)〉Fρ(L2[0,T ]),

and c(t) = [c1(t), . . . , cm(t)]T and y(t) = [y1(t), . . . , ym(t)]T are vector representation of the coef-
ficients and output samples. This equation is simply a rearragement of equation (16) when the
training measurements (yj)mj=1 are substituted for the desired outputs Ĥ(·)(t) from the Volterra series
model. G−1(t) can be calculated as the solution to the differential equation given by differentiating
G−1(t)G(t) = I

Ġ−1(t) = −G−1(t)G(t)G−1(t), t ≥ 0
G−1(0) = lim

t→0
G(t) (18)

where the conditions of the existence of this limit are discussed in [L. Zyla & R. deFigueiredo, 1983].
Essentially, if the limits of all the training inputs uj and outputs yj as time goes to zero from above
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exist and the determinant of the kth order time derivative of G(t) for any k ≥ m is non-zero, then
limt→0G(t) exists. This is easily satisfied for non-pathological choices of training inputs uj and
weighting sequence ρ. If the system is time-invariant, this is a linear vector equation which can be
solved using simple techniques from linear algebra.

With the optimal coefficients cj(t) determined for all t ∈ [0, T ], the desired approximation is
given by

Ĥ(v)(t) =
m∑
j=1

cj(t)
∞∑
n=0

1
ρnn!〈uj

∣∣∣
[0,t]

, v
∣∣∣
[0,t]
〉nL2[0,T ] (19)

and the Volterra kernels can be immediately identified as

hn(t, τ1, . . . , τn) = 1
ρnn!

m∑
j=1

cj(t)
n∏
i=1

uj(τi) (20)

If ρn = ρn, Ĥ reduces to

Ĥ(v)(t) =
m∑
j=1

cj(t)exp1
ρ
〈uj
∣∣∣
[0,t]

, v
∣∣∣
[0,t]
〉L2[0,T ] (21)

which is easily computed. It is easy to see that minimizing the worst-case distance between H(·)(t)
and Ĥ(·)(t) in Fock space over t also minimizes the empirical risk defined earlier (they are, in fact,
the same quantity).

4 Remarks and Conclusion
It was mentioned that one of the disadvantages of the crosscorrelation method and multiple-variance
method is that any noise in the measured output would be modeled. Noise was not explicitly
considered in the above RKHS approach to learning the Volterra kernels, but can be compensated
for easily. Suppose that the outputs yj are affected by noise and are replaced by yj + Vj , with
Vj being the projection of the noise into the output space. Assume Vi is independent of Vj for
i 6= j. Then the new coefficients (cj(t))mj=1 are now given by the solution to the differential equation
c(t) = (I + Σ−1

V G−1(t))−1Σ−1
V y(t) where ΣV is the diagonal matrix of the L2 norms of each sample

of the noise process (i.e., Σ−1
V = diag(‖V1‖L2[0,T ] , . . . ,‖Vm‖L2[0,T ])). This result is briefly derived in

[L. V. Zyla, & R. J. P. deFigueiredo, 1983].
In the discrete-time case with bounded inputs, it is easy to define a probability measure on

the input space since it would be isomorphic to a compact subset of RT , for inputs defined for T
samples. However, it is more difficult (although, not impossible) to assign a probability measure to
spaces of continuous functions (something like a Haar measure on a topological group representation
of L2[0, T ]). In this case, it is easier to deterministically choose a collection of inputs wisely to excite
the desired nonlinearities of the original system to be modeled rather than randomly select inputs.
This invalidates the O(m−

1
2 ) error bound for the ERM algorithm presented in Theorem 9.1 in the

notes, but nevertheless the performance of the RKHS method should still significantly exceed the
older crosscorrelation method.

To summarize, a weighted Fock space framework for system identification and modeling has
been presented which enables least squares regression in an RKHS. The resulting input-output map
can be expressed as a Volterra series operator and can be implemented by a bank of linear filters
followed by a polynomial output map (or other universally approximating memoryless nonlineary,
such as a feedforward neural network or rational function).
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