
ECE543 Project Paper: Spectrally-normalized margin bounds

for neural networks

Forest Yang

May 2019

1 Introduction

This paper [Bartlett et al., 2017] proves a generalization bound for neural networks free of explicit
”combinatorial parameters” like depth or number of parameters other than a log factor. This is
achieved via a covering number bound for the set of matrices achieved by a fixed matrix times
another matrix with bounded norm, which is then applied to bound the Rademacher complexity
via chaining. It is shown empirically that the normalized margin, which consists of the margin of
the network (akin to yf(x) for binary classification, but modified for multiclass) divided by the
Rademacher complexity (in other words, the inverse of the Rademacher complexity of the function
class composed with ramp loss with corresponding margin parameter) captures how difficult a
dataset is to learn. More precisely, by calculating the normalized margin of each input point and
plotting the resulting distribution, one can gauge the difficulty of the classification problem. A hard
problem corresponds to a distribution further to the left.
In this report I will present the proof of the paper’s result in a self-contained manner, leaving some
proofs to the appendix. The proofs are essentially the same as in the paper, except Lemma 3.2 is
very slightly generalized with a negligible modification to the proof (‖X‖p is allowed to be ‖X‖p,p′
with (p′, q) conjugate exponents). Also, because the empirical Rademacher complexity is used there
is no need to state Lemma A.8 in terms of a bound on the data norm ‖X‖2 like in the paper, and
thus no need to include data norm bounds in the union bound in Lemma A.9. Thus, unlike the
paper ‖X‖2 is included in the bounds immediately. Also, there seems to be a slight bug in the
paper when doing the union bound in Lemma A.9 – they assume that j1 ≥ 2, i.e. γ ≤ n

2 without
giving a proper justification. Instead I increased the range of j1 to all integers.
Then, I will compare the paper’s result with the neural network generalization bounds from the
course notes, after translating the framework of the course notes to a more typical neural net
framework. I will briefly discuss how Golowich et al. [2017], which a bound in the notes is derived
from, mentions this paper in an arguably wrong way. Finally, I will discuss how it seems inevitable
that the matrix covering lemma was used in the way it was by the paper.

2 The result

Preliminaries. Consider a multiclass classification problem with inputs from Rd and k classes, [k].
We use the following notation for a neural network. Consider L fixed nonlinearities (σ1, . . . , σL)
σi : R → R which, when applied to a vector, are applied component-wise. Denote the Lipschitz
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constant of σi as ρi. Fix d = d0, d1, d2, . . . , dL = k. Given L weight matrices A := (A1, . . . , AL),
the neural network with A for weights is the function

FA(x) = σL(ALσL−1(AL−1 . . . σ1(A1x) . . .)).

Denote the dataset as Zn = ((x1, y1), . . . , (xn, yn)) ⊂ Rd × [k], zi := (xi, yi) (can be reasoned
about as a random variable) and denote X ∈ Rn×d as the matrix whose ith row is xi. Define
W = max0≤i≤L di. For matrices ‖ · ‖p is norm obtained by vectorizing the matrix and taking the
‖ · ‖p norm of the vector (p = 2 corresponds to Frobenius norm), ‖ · ‖σ is the spectral or largest
singular value norm, and ‖ · ‖p,q is the q norm of the vector holding the p norms of the columns,
i.e. ‖ · ‖p,q = ‖(A:,1‖p, . . . , ‖A:,m‖p)‖q. Now we can give the spectral complexity RA of the network
FA, and present the main result.

RA =

(
L∏
i=1

ρi‖Ai‖σ

)(
L∑
i=1

‖A>i ‖
2/3
2,1

‖Ai‖2/3σ

)3/2

.

Theorem 1.1 (Main result.). Let nonlinearities (σi)
L
i=1 be given where each σi is ρi-Lipschitz

and σi(0) = 0 for all i ∈ [L]. Then for (x, y), (x1, y1), . . . , (xn, yn) drawn iid from any probability
distribution over Rd × {1, . . . , k}, with probability at least 1− δ over ((xi, yi))

n
i=1, for every γ > 0

and A = (Ai)
L
i=1 s.t. Ai ∈ Rdi×di−1 ,

R(FA) := Pr

[
arg max

j
FA(x)j 6= y

]
≤ R̂γ,n(FA) + Õ

(
‖X‖FRA

γn
ln(W ) +

√
ln(1/δ)

n

)
,

where R̂γ(f) := 1
n

∑n
i=1 `γ(−M(f(xi), yi)) ≤ 1

n

∑n
i=1 1{f(xi)yi ≤ γ + maxj 6=yi f(xi)j}.

Furthermore, in bounding the covering number of neural networks, it will help to denote the
product of sets of matrices as the set of products, i.e. if A ⊂ Rd×m and X ⊂ Rm×n, AX := {AX ∈
Rd×n : A ∈ A, X ∈ X}. Denote σ ◦ A = {σ(A) : A ∈ A}.

3 The proof

3.1 Rademacher complexity

Define the margin M : Rk × [k]→ R by M(v, y) = vy −maxj 6=y vj , the ramp loss

`γ(r) :=


0 r < −γ
1 + r

γ r ∈ [−γ, 0]

1 r > 0.

and the ramp risk Rγ(f) := E `γ(M(f(x), y)), where the expectation is over x, y drawn from
some underlying probability distribution over Rd × [k]. For a set of real-valued functions H, define
H|zn = {(h(xi, yi))

n
i=1 | h ∈ H}. Finally, given a set A ⊂ Rn define the Rademacher complexity as

Rad(A) :=
1

n
Eε sup

a∈A

n∑
i=1

εiai,
εi + 1

2

i.i.d.∼ Ber(0.5).

By standard techniques, we have the following bound:
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Lemma 3.1. Given functions F from Rd → Rk and any γ > 0, define

Fγ := {(x, y) 7→ `γ(−M(f(x), y)) : f ∈ F}.

Then, with probability at least 1− δ over zn, every f ∈ F satisfies

R(f) ≤ R̂n,γ(f) + 2Rad((Fγ)|zn) + 3

√
ln(2/δ)

2n
.

Proof. See appendix.

3.2 Matrix covering number

We define the proper covering number as follows.

N (U, ε, ‖ · ‖) = min
V⊂U
{|V | : sup

A∈U
min
B∈V
‖A−B‖ ≤ ε}.

A set V ⊂ U which satisfies the condition in the above set construction is said to cover U at scale
ε with norm ‖ · ‖, meaning for any element of U , there is an element of V that is ε close. For
the upcoming inductive proof in the covering of neural nets, the fact that V is a proper cover, i.e.
V ⊂ U , will be important.
Cover numbers are how one controls Rademacher complexity in the case of continuous valued
loss (c.f. VC dimension). By covering a continuous valued set, one has essentially ”turned the set
finite” modulo some error based on ε, so that one can still apply the finite class lemma to bound the
Rademacher complexity. In fact, the Dudley entropy integral obtained by the method of chaining
will provide an even tighter bound than the finite class lemma. The other approach in class we
saw for bounding the Rademacher complexity of a continuous set was direct calculation, which was
doable in the RKHS framework.
The valuable covering number bound for a fixed matrix times a variable one is as follows:

Lemma 3.2. Let conjugate exponents (p, q) and (r, s) be given with p ≤ 2, as well as positive reals
(a, ε) and positive integer m. Let matrix X ∈ Rn×d be given with ‖X‖p = b. Then

N
({
XA : A ∈ Rd×m, ‖A‖q,s ≤ a

}
, ε, ‖ · ‖2

)
≤
⌈
a2b2m2/r

ε2
ln(2dm)

⌉
.

Actually, it is possible to generalize this lemma slightly to the following, with a very small
modification to the proof.

Lemma 3.2.2. Let conjugate exponents (p′, q) and (r, s) be given as well as p ≤ 2, positive reals
(a, ε) and positive integer m. Let matrix X ∈ Rn×d be given with ‖X‖p,p′ = b. Then

N
({
XA : A ∈ Rd×m, ‖A‖q,s ≤ a

}
, ε, ‖ · ‖2

)
≤
⌈
a2b2m2/r

ε2
ln(2dm)

⌉
.

Proof. See appendix.
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3.3 Neural net covering number

We would like to cover the set (recall X ∈ Rn×d has data points for rows)

FA(X>) := {FA(X>) : ∀i ∈ {1, . . . , L}, ‖Ai‖σ ≤ si, ‖A>i ‖2,1 ≤ bi}
= {σL(ALσL−1(AL−1 . . . σ1(A1X

>) . . .)) : ∀i ∈ [L], Ai ∈ Ai},

where Ai := {Ai ∈ Rdi×di−1 : ‖Ai‖σ ≤ si, ‖A>i ‖2,1}. Let X0 = {X>}, A := AL × . . . × A1. For
i ∈ [L], define

Xi : = {σi(Ai . . . σ1(A1X
>) . . .) ∈ Rdi×n : ∀ 1 ≤ j ≤ i, Aj ∈ Aj}

= {σi(Ai(Xi−1)) ∈ Rdi×n : Xi−1 ∈ Xi−1, Ai ∈ Ai} =: σ ◦ AiXi−1.

In other words, Xi is the set of possible outputs at the ith layer with the dataset X> as input and
supposing Aj ∈ Aj for each j ≤ i. Notice that XL = FA(X>), and that X0 is a cover for itself of

size 1. Thus, if we can inductively construct a cover X̂i+1 for Xi+1 using a cover X̂i for Xi, we will
construct a cover XL = FA(X).

Lemma A.7. Let ε1, . . . , εL > 0. Let Ni = supXi−1∈Xi−1
N (AiXi−1, εi, ‖ · ‖2). Then, there is a

proper cover of FA(X>) of size at most
∏L
i=1Ni at scale

∑L
j=1

[
ρjεj

∏L
l=j+1 ρlsl

]
.

Proof. Base case: X̂0 = X0 = {X>}.
Inductive step: Assume X̂i is a proper cover for Xi of size≤

∏i
j=1Ni at scale

∑
j≤i

[
ρjεj

∏i
l=j+1 ρlsl

]
.

We have Xi+1 = σi+1◦Ai+1Xi, where the product of two sets is the set of products of their elements.

For each X̂i ∈ X̂i, there is a proper cover of Ai+1X̂i at scale εi+1 of size at most Ni+1. We may

denote the cover Âi+1(X̂i)X̂i because each element has the form Âi+1X̂i for some Âi+1 ∈ Ai+1,
due to being a proper cover. Consider the union

Âi+1(X̂i)X̂i :=
⋃

X̂i∈X̂i

Âi+1(X̂i)X̂i.

Set X̂i+1 = {σi+1(ÂiX̂i) : ÂiX̂i ∈ Âi+1(X̂i)Xi} = σi+1 ◦ Âi+1(X̂i)Xi.
The size |X̂i+1| ≤ |X̂i|Ni+1 ≤

∏
j≤i+1Nj . Let’s compute the scale of this cover. Given Xi+1 =

σi+1(Ai+1Xi) ∈ Xi+1, by the above, there is X̂i+1 = σi+1(Âi+1X̂i) ∈ X̂i+1 such that

‖Xi+1 − X̂i+1‖ = ‖σi+1(Ai+1Xi)− σi+1(Âi+1X̂i)‖ ≤ ρi+1‖Ai+1Xi − Âi+1X̂i‖

≤ ρi+1

(
‖Ai+1Xi −Ai+1X̂i‖+ ‖Ai+1X̂i − Âi+1X̂i‖

)
≤ ρi+1si+1‖Xi − X̂i‖+ ρi+1εi+1

≤ ρi+1si+1

∑
j≤i

ρjεj i∏
l=j+1

ρlsl

+ ρi+1εi+1

=
∑
j≤i+1

ρjεj

i+1∏
l=j+1

ρlsl.
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HELPFUL PICTURE

Xi
σi+1 ◦ Ai+1Xi = Xi+1

σi+1 ◦ Ai+1

X̂i
X̂i+1

Now we can plug in values of εi to the above proposition to obtain a covering number bound for
neural networks.

Theorem 3.3.

lnN (FA(X>), ε, ‖ · ‖2) ≤ ‖X‖
2
2 ln(2W 2)

ε2

(
L∏
i=1

ρ2
i s

2
i

)(
L∑
i=1

(
bi
si

)2/3
)3

.

Proof. Recall that by Lemma A.7, if Ni = supXi−1∈Xi−1
N (AiXi−1, εi, ‖ · ‖2) then there is a proper

cover of FA(X>) of size at most
∏L
i=1Ni at scale τ =

∑L
j=1

[
ρjεj

∏L
l=j+1 ρlsl

]
. We set

εi =
αiε

ρi
∏
j>i ρjsj

, αi =
1

ᾱ

(
bi
si

)2/3

, ᾱ =

L∑
i=1

(
bi
si

)2/3

.

At first, this choice may seem out of the blue, but in retrospect it makes sense. For the scale at
the ith layer, we divide by ρi

∏
j>i ρisi because that is roughly how much the space has blown up.

εi is roughly proportional to bi
si

because if bi ≥ ‖A>i ‖2,1 is large compared to si, the difficulty bi of
covering the ith layer at a small scale is not worth counteracting the blowup si.
The scale τ becomes

τ =

L∑
i=1

ρiεi∏
j>i

ρjsj

 =

L∑
i=1

ρi αiε

ρi
∏
j>i ρjsj

∏
j>i

ρjsj

 = ε

L∑
i=1

αi = ε.

Therefore, the cover of FA(X>) corresponding to these choices of εi is at scale ε. Now we compute
the size. By the matrix covering lemma, Lemma 3.2, (p = q = 2, r =∞, s = 1,max{d,m} ≤W )

lnNi = sup
Xi−1∈Xi−1

lnN (AiXi−1, εi, ‖ · ‖2) ≤

⌈
supXi−1∈Xi−1

‖Xi−1‖22b2i
ε2i

⌉
ln(2W 2).
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Now for Xi = σi(AiXi−1) ∈ Xi, using σi(0) = 0,

‖Xi‖2 = ‖σi(AiXi−1)‖2 ≤ ρi‖AiXi−1‖2 ≤ ρisi‖Xi−1‖2 ≤ ‖X‖2
∏

1≤j≤i

ρisi,

where the last part is by induction. Thus,

lnN (FA(X>), ε, ‖ · ‖2) ≤
L∑
i=1

lnNi ≤ ln(2W 2)

L∑
i=1

⌈
supXi−1∈Xi−1

‖Xi−1‖22b2i
ε2i

⌉

≤ ln(2W 2)

L∑
i=1

⌈
‖X‖22(

∏
1≤j<i ρ

2
js

2
j )b

2
i

α2
i ε

2(ρi
∏
j>i ρisi)

−2

⌉

≤ ln(2W 2)

⌈
‖X‖22(

∏L
i=1 ρ

2
i s

2
i )

ε2

⌉
L∑
i=1

⌈
b2i
s2
iα

2
i

⌉

= ln(2W 2)

⌈
‖X‖22(

∏L
i=1 ρ

2
i s

2
i )

ε2

⌉
(

L∑
i=1

(
bi
si

)2/3
)3
 .

3.4 Plugging into Rademacher complexity

Lemma A.5 (Dudley integral). Let F be a real valued function class taking values in [−1, 1]
containing 0. Then,

Rad(F|S) ≤ inf
α>0

[
4α√
n

+
12

n

∫ √n
α

√
logN (F|S , ε, ‖ · ‖2) dε

]
.

Proof. See appendix.

We use Lemma A.5 and Theorem 3.3 to prove Lemma A.8:

Lemma A.8. Let (σ1, . . . , σL) be given where σi is ρi-Lipschitz, and let margin γ > 0. Let

spectral norm bounds s = (si)
L
i=1, and ‖ · ‖2,1 norm bounds b = (bi)

L
i=1 be given. Define As,b

i ,As,b

accordingly. Then with probability at least 1 − δ over i.i.d. samples zn = ((xi, yi))
n
i=1, X> =

[x1, . . . , xn], every set of weight matrices A ∈ As,b satisfies

R(FA) ≤ R̂n,γ(FA) +
8

n
+

72‖X‖2 ln(2W ) ln(n)

γn

(
L∏
i=1

siρi

)(
L∑
i=1

b
2/3
i

s
2/3
i

)3/2

+ 3

√
ln(2/δ)

2n
.

Proof. By Lemma 3.1, with probability at least 1− δ, for any A ∈ A,

R(FA) ≤ R̂n,γ(FA) + 2Rad((Fγ)|zn) + 3

√
ln(2/δ)

2n
, Fγ = `γ ◦ −M ◦ FAb,s .

6



Note that M(·, y) is 2-Lipschitz for every y ∈ [k] :

|M(z, y)−M(x, y)| = |zy − xy −max
j 6=y

zj + max
j 6=y

xj | ≤ |zy − xy|+ |max
j 6=y

zj −max
j 6=y

xj |

≤ |zy − xy|+ max
j
|zj − xj | ≤ 2‖z − y‖∞ ≤ 2‖z − y‖2.

Furthermore, `γ is 1
γ Lipschitz. Thus, by considering `γ(−M(σL(·), yi)) as the final nonlinearity

with Lipschitz contant 2ρL
γ , we may apply Theorem 3.3 (theorem holds with different nonlinearities

for each point, which is the case here since each point has a different yi, as long as their Lipschitz
constants are the same) to obtain that

lnN ((Fγ)|zn , ε, ‖ · ‖2) ≤ ln(2W 2)
4‖X‖22(

∏L
i=1 ρ

2
i s

2
i )

ε2

(
L∑
i=1

(
bi
si

)2/3
)3

=:
R2
As,b

ε2
.

By the Dudley entropy integral,

Rad((Fγ)|zn) ≤ inf
α>0

4α√
n

+
12

n

∫ √n
α

RAs,b

ε
dε = inf

α>0

4α√
n

+
12RAs,b

n
ln(
√
n/α).

If we choose α = 1√
n

, we obtain that for all A ∈ As,b

R(FA) ≤ R̂n,γ(FA) + 2Rad((Fγ)|zn) + 3

√
log(2/δ)

2n

≤ R̂n,γ(FA) +
8

n
+

24 ln(n)RAs,b

n
+ 3

√
ln(2/δ)

2n

= R̂n,γ(FA) +
8

n
+

48‖X‖2 ln(n)
√

ln(2W 2)

γn

(
L∏
i=1

ρisi

)(
L∑
i=1

(
bi
si

)2/3
)3/2

+ 3

√
ln(2/δ)

2n
,

which implies the bound since
√

ln(2W 2) ≤ 1.5 ln(2W ).

3.5 Union bound over a countable set

Lemma A.9. Suppose the setting and notation of Theorem 1.1. With probability at least 1 − δ,
every network FA : Rd → Rk with weight matrices A = (A1, . . . , AL) and every γ > 0 satisfy

R(FA) ≤ R̂n,γ(FA) +
8

n
+

144‖X‖2 ln(n) ln(2W )

γn

(
L∏
i=1

ρi

(
‖Ai‖σ +

1

L

)) L∑
i=1

(
‖A>i ‖2,1 + 1

L

‖Ai‖σ + 1
L

)2/3
3/2

+
3√
2n

√√√√ln

(
2

δ

)
+ ln

(
max

{
2γ,

1

γ

})
+

L∑
i=1

2 ln(L‖Ai‖σ + 2) + 2 ln(L‖A>i ‖2,1 + 2).

The additive 1
L terms are a bit of a nuisance, but seem necessary to avoid a dependence on L

like
√
L or 2L, as other ways of cutting up the space would give. Furthermore, one may justify their

presence by saying that if the matrix norms are all less than 1
L , then

√
ln(1/δ)
n dominates. This

expression is Õ the expression in Theorem 1.1.

Proof. See appendix.
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4 Comparisons

A paper Neyshabur et al. [2017] obtains a similar looking bound with a different method (PAC-Bayes
method). Another paper Arora et al. [2018] is said to obtain stronger results, using a compression
method. Here I will focus on comparing the bound on the Rademacher complexity obtained with
the matrix covering method with bounds in the course notes.

4.1 Course notes comparison

First of all, the setting of the notes when talking about neural nets is different in a subtle yet
significant way. The notes define certain function classes F0, . . . ,F` representing the set of possible
hidden units at each layer. It seems to always be the case that the set of base classifiers in the
setting of the notes is the first layer of the actual neural net, i.e. the mappings x 7→ σ1(A1x), so I
will use the notation H1, . . . ,HL, with H standing for hidden unit.
Let us be more precise. We define B1 = {A ∈ Rd1×d : ‖A>‖2,∞ ≤ B1}, for i ≥ 2, Bi = {A ∈
Rdi×di−1 : ‖A>‖1,∞ ≤ Bi}, and B = B1 × . . . × BL. Define H1 = {x 7→ σ1(a>x) : ‖a‖2 ≤ B1}.
Then, for i ≥ 2, we define

Hi = {x 7→ σi(a
>
i σi−1(Ai−1(. . . σ1(A1x) . . .))) : ∀1 ≤ j ≤ i, Aj ∈ Bj , ai ∈ Rd−1, ‖ai‖ ≤ Bi}.

In other words, Hi is the set of possible hidden unit functions that can be computed at the ith
layer, since ‖A>‖1,∞ ≤ B expresses the condition that each row of A has 1-norm ≤ B, and the ith
layer can be viewed as a tuple of di−1 functions. Notice that if we let FA:i

: Rd → Rdi denote the
function the neural net computes at the ith layer, and B:i = B1× . . .×Bi, we may also write Hi as

Hi =

σi(
di−1∑
l=1

alfl) : ∃ (A1, . . . , Ai−1) ∈ B:i−1, (f1, . . . , fdi−1
) = FA:i−1

, ‖a‖1 ≤ Bi

 .

From this, we have thatHi ⊂ σi◦Bi abs conv(Hi−1), but is not necessarily equal to σi◦Bi abs conv(Hi−1),
for two reasons.
First, di−1 is fixed from the beginning, i.e. Hi does not contain combinations of elements from
Hi−1 which require more than di−1 elements. Second, and perhaps more subtly, even though
f1, . . . , fdi−1 ∈ Hi−1, it is not necessary that for any (h1, . . . , hdi−1), there exists A such that
FA:i−1

= (h1, . . . , hdi−1
). This is because once you fix the matrices (A1, . . . , Ai−2) ∈ B:i−2, certain

functions in Hi−1 may become unavailable. While it’s true by definition that for any h ∈ Hi−1,
there is some FA:i−1

with h as a component function, FA:i−1
may not compute arbitrary tuples of

functions from Hi−1.
With this in mind, we can still use the analysis in the course notes. It just may not be as tight,
since Hi ⊂ σi ◦Bi abs conv(Hi−1) may be proper.

Rad((Hi)|Xn) ≤ Rad(σi ◦Bi abs conv((Hi−1)|Xn)) ≤ 2ρiBi Rad((Hi−1)|Xn).

With the base case Rad((H1)|Xn) ≤ 2ρ1B1‖X‖2
n we obtain

Rad((HL)|Xn) ≤ 2L

(
L∏
i=1

ρiBi

)
‖X‖2
n

.
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Unfortunately, this bound has a 2L in it. However, we may apply the result from the notes by GRS:

Rad((HL)|Xn) ≤

(
L∏
i=2

ρiBi

)Rad((H1)|Xn) +
2

n

√√√√(log 2)

n∑
i=1

sup
‖a‖≤B1

σ1(a>Xi)2


≤

(
L∏
i=2

ρiBi

)(
2ρ1B1‖X‖2

n
+

2

n

√
L(log 2)ρ2

1B
2
1‖X‖22

)

=
2‖X‖2
n

(
L∏
i=1

ρiBi

)(
1 +

√
L log 2

)
.

The ratio of this bound to the above bound is 1+
√
L log 2

2L−1 . This bound is much better. If we replaced
the bounds Bi with the norms they represent, we would get

complexity(FA) /
‖X‖2

√
L

n

(
ρ1‖A>1 ‖2,∞

L∏
i=2

ρi‖A>i ‖1,∞

)
,

where the / acknowledges some imprecision in the statement. The matrix covering bound gives

complexity(FA) /
‖X‖2 ln(n) ln(2W )

n

(
L∏
i=1

ρi‖Ai‖σ

)(
L∑
i=1

(
‖A>i ‖2,1
‖Ai‖σ

)2/3
)3/2

.

Let us compute the ratio of the matrix covering bound to the GRS bound, assuming each matrix
is the same:

r =
L3/2‖A‖L−1

σ ‖A>‖2,1 ln(n) ln(2W )

L1/2‖A>‖L−1
1,∞ ‖A>‖2,∞

.

In the worst case for the matrix covering lemma, ‖A>‖1,∞ = ‖A‖σ/W , as in the case where A has
one nonzero column with all ones. Furthermore, ‖A>‖2,1 ≤W‖A>‖2,∞. Then,

r ≈ L(
√
W )L−1W ln(n) ln(2W ),

i.e. the GRS bound is exponentially better than the matrix covering bound.
On the other hand, it is possible for ‖A‖σ ≤ ‖A‖1,∞/

√
W , like in the case where A has a row with

identical entries and the rest are zero. Thus, even if we assume that ‖A>‖2,1 = W‖A>‖2,∞ which
is worst case, we obtain

r ≈ LW ln(n) ln(2W )

(
√
W )L−3

.

In this regime, aside from the pesky ln(n) factor which the GRS bound has the advantage of not
having, the matrix covering bound is exponentially better.
It seems that the ‖ · ‖1,∞ is advantageous, compared to an analogous bound using Frobenius norm
constraints presented in the slides, in that there are cases where ‖ · ‖1,∞ < ‖ · ‖σ (this is not true
if ‖ · ‖1,∞ is replaced with ‖ · ‖2. It is nice that the GRS/notes method applied to `1 norms and
absolute convex hulls can allow us to use this norm, and the analysis is rather clean.
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4.2 GRS paper’s mentioning

Golowich et al. [2017] say that since
‖A>i ‖2,1
‖Ai‖σ ≥ 1, the matrix covering derived bound

‖X‖2 ln(n) ln(2W )

n

(
L∏
i=1

ρi‖Ai‖σ

)[
L∑
i=1

(
‖A>i ‖2,1
‖Ai‖σ

)2/3
]3/2

= CL3/2,

i.e. it has a L3/2 dependence on L, and is not size independent. Quote: ”there is still a strong
and unavoidable polynomial dependence... (many pages later) hence the bound scales at least as√
L3/n.” But, this is not exactly true, because

‖X‖2 ln(. . .)

n

(
L∏
i=1

ρi‖Ai‖σ

)[
L∑
i=1

(
‖A>i ‖2,1
‖Ai‖σ

)2/3
]3/2

=
‖X‖2 ln(. . .)

n

(
L∏
i=1

ρi

) L∑
i=1

‖A>i ‖2,1∏
j 6=i

‖Ai‖σ

2/3


3/2

and the ”unavoidable” L3/2 is gone.

5 Inevitability discussion

If we attempt to apply the slightly generalized matrix covering lemma:

lnN (XL, τL, ‖ · ‖2) ≤
L∑
i=1

sup
Xi−1∈Xi−1

lnN (AiXi−1, εi, ‖ · ‖)

≤
L∑
i=1

(supXi−1∈Xi−1
‖X>i−1‖2p,p′)‖A>i ‖2q,sW 2/r

ε2i
ln(2W 2).

Our choices are restricted here. Firstly, the covering works with the ‖ · ‖2 norm, due to Dudley
applying the finite class lemma to the increment classes, which requires ‖ · ‖2 norms. Therefore, it
seems inevitable that the scale of our cover is

τL =

L∑
i=1

ρiεi
 L∏
j=i+1

ρj‖Aj‖σ

 .
Specifically, ‖Ai(Xi−1− X̂i−1)‖2 ≤ ‖Ai‖σ‖Xi−1− X̂i−1‖2 seems forced, i.e. covering elements with
respect to ‖ · ‖2 forces the appearance of the spectral norms, ‖Ai‖σ. This means that we should

choose εi = Ciε
ρi

∏L
j=i+1(ρj‖Aj‖σ)

for some
∑L
i=1 Ci = 1 for the scales εi, to make τL = ε. In order to

get the nice final expression for the covering number, the fact that

‖X>i−1‖2 ≤ (

i−1∏
j=1

ρj‖Aj‖σ)‖X‖2

was used. Then, the ‖X‖2
∏i−1
j=1 ρj‖Aj‖σ is merged with the ρi

∏L
j=i+1 ρj‖Aj‖σ to get the factor

‖X‖2
∏L
j=1 ρj‖Aj‖σ that can be pulled out of all terms of the sum, modulo leaving behind ‖Ai‖σ

10



in each term.
Thus, by the above, since εi is forced to carry ρi

∏L
j=i+1 ρj‖Aj‖σ, in order to get a nice expression,

it seems like ‖X>i−1‖p,p′ must satisfy

‖X>i−1‖p,p′ ≤

i−1∏
j=1

ρj‖Aj‖σ

 ‖X>‖p,p′ ,
that is if we want to replace the ‖X‖2 in the covering number bound with ‖X>‖p,p′ . Unfortunately,
X>i ∈ Rn×di , which means that rows represent sample points. If each layer is then applying a
transformation to each row, which should make the spectral norm pop out, and p′ corresponds to
the rows, we should take p′ = 2. Furthermore, there is no benefit to having p equal anything but 2,
because the other parameters (p′, q), (r, s) are unaffected by p, and p must be ≤ 2, ‖ · ‖p ≤ ‖ · ‖l for
l ≤ p. Then, q = 2, and we take s = 1 so that r = ∞, making the W 2/r go away. In other words,
what is done in the paper seems like the only viable application of the matrix covering lemma.
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6 Appendix

Lemma 3.1. Given functions F from Rd → Rk and any γ > 0, define

Fγ := {(x, y) 7→ `γ(−M(f(x), y)) : f ∈ F}.

Then, with probability at least 1− δ over zn, every f ∈ F satisfies

R(f) ≤ R̂n,γ(f) + 2Rad((Fγ)|zn) + 3

√
ln(2/δ)

2n
.

Proof. Define ∆n(zn) := supf∈F R̂n,γ(f)−Rγ(f). We use the symmetrization argument (without

absolute values); let zn
′

be an i.i.d. sample separate from zn but drawn from the same distribution.
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Let R̂′n,γ denote the empirical ramp risk on the zn
′

dataset. Further, define the function h by
h(f, zi) = `γ(−M(f(xi), yi)). We have

Ezn∆n(zn) = Ezn sup
f∈F

[
Rγ(f)− R̂n,γ(f)

]
= Ezn sup

f∈F

[
Ezn′ R̂

′
n,γ(f)− R̂n,γ(f)

]
≤ EznEzn′ sup

f∈F

[
R̂′n,γ(f)− R̂nγ(f)

]
=

1

n
EεEznEzn′ sup

f∈F

n∑
i=1

εi(h(f, z′i)− h(f, zi))

≤ 1

n
Ezn′Eε sup

f∈F

n∑
i=1

εih(f, z′i) +
1

n
EznEε sup

f∈F

n∑
i=1

εih(f, zi) = 2EznRad((Fγ)|zn).

Now we observe that ∆n(zn) and Rad((Fγ)|zn) both satisfy bounded differences as functions of zn

with constant 1
n , because `γ ∈ [0, 1]. Therefore by McDiarmid’s,

w.p. ≥ 1− δ

2
, ∆n(zn) ≤ Ezn∆(zn) +

√
log(2/δ)

2n
,

w.p. ≥ 1− δ

2
, EznRad((Fγ)|zn) ≤ Rad((Fγ)|zn) +

√
log(2/δ)

2n
.

Noting that R(f) ≤ Rγ(f), because 1{y 6= arg maxi f(x)i} ≤ `γ(−M(f(x), y)), and summing the
two inequalities which w.p. ≥ 1− δ both hold, we get

R(f) ≤ Rγ(f) ≤ ∆(zn) + R̂n,γ(f) ≤ E∆(zn) +

√
log(2/δ)

2n

≤ R̂n,γ(f) + 2ERad((Fγ)|zn) +

√
log(2/δ)

2n

≤ R̂n,γ(f) + 2Rad((Fγ)|zn) + 3

√
log(2/δ)

2n
.

Lemma 3.2.2. Let conjugate exponents (p′, q) and (r, s) be given as well as p ≤ 2, positive reals
(a, ε) and positive integer m. Let matrix X ∈ Rn×d be given with ‖X‖p,p′ = b. Then

N
({
XA : A ∈ Rd×m, ‖A‖q,s ≤ a

}
, ε, ‖ · ‖2

)
≤
⌈
a2b2m2/r

ε2
ln(2dm)

⌉
.

Proof. The proof of this lemma uses the Maurey sparsification lemma:

Lemma A.6. Fix Hilbert space H with norm ‖ · ‖. If U =
∑d
i=1 αiVi with α ∈ Rd≥0 6= 0 and

Vi ∈ H, given positive integer k, there are nonnegative integers (k1, . . . , kd) s.t.
∑d
i=1 ki = k and∥∥∥∥∥U − ‖α‖1k

d∑
i=1

kiVi

∥∥∥∥∥
2

≤ ‖α‖1
k

d∑
i=1

αi‖Vi‖2 ≤
‖α‖21
k

max
i∈[d]
‖Vi‖2.
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Proof Of Maurey’s Lemma. First assume
∑d
i=1 αi = 1, i.e. α ∈ ∆d. Then if we define k i.i.d.

random variables I1, . . . , Ik s.t. Pr[Ij = i] = αi for all i ∈ [d],

E

1

k

k∑
j=1

VIj

 = EVI1 =

d∑
i=1

αiVi = U.

By independence, the variance of the sum of the VIj ’s is the sum of the variances (identify ∗ with
〈·, ·〉H:

E

U − 1

k

k∑
j=1

VIj

2

= Var

1

k

k∑
j=1

VIj

 =
k

k2
Var(VI1) ≤ 1

k
E‖VI1‖2 =

1

k

d∑
i=1

αi‖Vi‖2.

By the probabilistic argument, there is some i1, i2, . . . , ik such that∥∥∥∥∥∥U − 1

k

k∑
j=1

Vik

∥∥∥∥∥∥
2

=

∥∥∥∥∥U − 1

k

d∑
i=1

kiVi

∥∥∥∥∥
2

≤ 1

k

d∑
i=1

αi‖Vi‖2,

where ki := |{j : ij = i}|. Note that if α 6= 1, we may replace U with U/‖α‖1 and α with α/‖α‖1.
Then, multiply both sides by ‖α‖21 to get the original statement.

Now we prove Lemma 3.2.2. Recall (p′, q) and (r, s) are conjugate exponents and p ≥ 2. Denote

b := ‖X‖p,p′ and Y =
[

X:,1

‖X:,1‖p . . .
X:,d

‖X:,d‖p

]
∈ Rn×d as the matrix with the columns of X scaled

by their norms for its columns. Furthermore, define S ∈ Rd×m by Sij = ‖X:,i‖p, i.e. each column
of S has d entries which equal the d norms of X’s columns. We will consider the setting of Maurey’s
Lemma with H = Rn×m and norm ‖ · ‖2 induced by the Frobenius inner product. Let A ∈ Rd×m
be a matrix with ‖A‖q,s ≤ a. Notice that (� denotes elementwise product)

XA = Y (S �A) = Y

d∑
i=1

m∑
j=1

Aij‖X:,i‖peie>j = Y

d∑
i=1

m∑
j=1

AijSijeie
>
j .

In other words, XA is a nonnegative combination of the N = 2dm basis elements {Y eie
>
j }

d,m
i,j=1 ∪

{−Y eie
>
j }

d,m
i,j=1, placing it in the setting of Maurey’s Lemma. The sum of the weights is ‖S �A‖1.

Using the conjugacy of (p′, q) and (r, s):

‖S �A‖1 ≤
∥∥∥∥ [‖S:,1‖p′‖A:,1‖q . . . ‖S:,m‖p′‖A:,m‖q

] ∥∥∥∥
1

≤
∥∥∥∥ [‖S:,1‖p′ . . . ‖S:,m‖p′

] ∥∥∥∥
r

∥∥∥∥ [‖A:,1‖q . . . ‖A:,m‖q
] ∥∥∥∥

s

= ‖S‖p′,r‖A‖q,s.

Furthermore, notice that each column of S is identically equal to the ‖ · ‖p-norms of the columns
of X, so ‖S‖p′,r = m1/r‖X‖p,p′ = m1/rb. Denote ā = abm1/r. Then, by Maurey’s Lemma, given
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k ∈ Z+, there exist k1, . . . k2dm summing to k where∥∥∥∥∥∥ āk
d∑
i=1

m∑
j=1

kd(j−1)+iY eie
>
j −

ā

k

d∑
i=1

m∑
j=1

kd(m−1+j)+iY eie
>
j −XA

∥∥∥∥∥∥
2

2

≤ ā2

k
max
ij
‖Y eie

>
j ‖2 ≤

ā2

k
max
i
‖Y ei‖22 =

ā2

k
max
i

‖Xei‖22
‖Xei‖2p

≤ a2b2m2/r

k
.

Thus, if we choose k =
⌈
a2b2m2/r

ε2

⌉
, the RHS is ≤ ε. Notice there is a subtlety; ‖S � A‖1 ≤ ā but

may not equal ā; Maurey’s Lemma says we need ‖α‖1k outside the sums in the first line where ‖α‖1 is
the sum of the weights of the basis elements when they sum to XA. What if ‖α‖1 = ‖S�A‖1 < ā?
In that case, since we have each element and their negative in the basis, we can artificially increase
the sum of the weights by adding weight to an element and its negative without changing XA until
it equals ā. This lets us put ā

k in the first line.

Defining {Vi}Ni=1 = {Y eie
>
j }

d,m
i,j=1 ∪ {−Y eie

>
j }

d,m
i,j=1 by numbering the elements arbitrarily, we have{

1

k

N∑
i=1

kiVi : ki ∈ N,
N∑
i=1

ki = k

}
is proper cover for {XA : ‖A‖q,s ≤ a} at scale ε for ‖ · ‖2.

The size of this cover is less than Nk, because there are k units of mass, each having N choices for

which element to go to. Therefore, N ({XA : ‖A‖q,s ≤ a}, ε, ‖ · ‖2) ≤ k lnN =
⌈
a2b2m2/r

ε2

⌉
ln(2dm).

Comment: the point of the scaling is to deal with arbitrary norms. If you do not scale, then

you get
‖X‖22,∞‖A‖

2
1

ε2 ln(2dm).

Lemma A.5 (Dudley integral). Let F be a real valued function class taking values in [−1, 1]
containing 0. Then,

Rad(F|S) ≤ inf
α>0

[
4α√
n

+
12

n

∫ √n
α

√
logN (F|S , ε, ‖ · ‖2) dε

]
.

Proof. Let N ∈ N be arbitrary and define εi =
√
n2−(i−1); in particular, ε1 =

√
n2−(1−1) =

√
n.

Furthermore, define Vi as a εi-cover of F|S of size |Vi| = N (F|S , εi, ‖ · ‖2). But, take V1 to be the
specific

√
n-cover, V1 = {0}. Note we’ve used the assumption that f ∈ F has output in [−1, 1] to

say that {0} is indeed a
√
n-cover. For any f ∈ F , denote, vi[f ] as the element of Vi which covers

f|S := (f(x1), . . . , f(xn)), i.e.
√∑n

t=1(vi[f ]t − f(xt))2 ≤ εi. Now,

Eε sup
f∈F
〈ε, f|S〉 = Eε sup

f∈F

〈
ε, f|S − vN [f ] +

N−1∑
i=1

(vi+1[f ]− vi[f ]) + v1[f ]

〉

≤ Eε sup
f∈F
〈ε, f − vN [f ]〉+

N−1∑
i=1

Eε sup
f∈F
〈ε, vi+1[f ]− vi[f ]〉+ Eε sup

f∈F
〈ε, v1[f ]〉.
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Bounding the first term is simple Cauchy-Schwarz: Eε supf∈F 〈ε, f|S − vN [f ]〉 ≤
√
nεN . The last

term, since V1 = {0}, is 0. Now for the intermediate terms, notice

Eε sup
f∈F
〈ε, vi+1[f ]− vi[f ]〉 = URad(Wi), Wi := {vi+1[f ]− vi[f ] : f ∈ F}.

Since vi+1[f ] ∈ Vi+1 and vi[f ] ∈ Vi, there are at most |Vi+1||Vi| ≤ |Vi+1|2 elements of |Wi|.
Furthermore, the norm of an element is at most ‖vi+1[f ] − vi[f ]‖ ≤ εi+1 + εi = 3εi+1. Thus, by
the finite class lemma,

Eε sup
f∈F
〈ε, vi+1[f ]− vi[f ]〉 ≤ sup

w∈Wi

‖w‖2
√

2 log |Wi| ≤ 6εi+1

√
log |Vi+1|.

We’re almost done. We just need to plug these in and relate the final quantity to an integral.

Eε sup
f∈F
〈ε, f|S〉 ≤

√
nεN + 6

N−1∑
i=1

εi+1

√
log |Vi+1|

=
√
nεN + 12

N−1∑
i=1

(εi+1 − εi+2)
√

log |Vi+1|

=
√
nεN + 12

N∑
i=2

(εi − εi+1)
√

logN (F|S , εi, ‖ · ‖)

≤
√
nεN + 12

∫ √n/2
εN+1

√
logN (F|S , ε, ‖ · ‖2) dε.

Now given α > 0, pick the minimum N such that εN+1 > α. Then, α ≥ εN+2 = εN/4, so εN ≤ 4α.
Thus,

URad(F|S) = Eε sup
f∈F
〈ε, f|S〉 ≤ 4

√
nα+ 12

∫ √n/2
α

√
logN (F|S , ε, ‖ · ‖2) dε.

We obtain the exact statement in the lemma by infing over α > 0 and dividing by n to normalize
the URad to get Rad.

Lemma A.9. Suppose the setting and notation of Theorem 1.1. With probability at least 1 − δ,
every network FA : Rd → Rk with weight matrices A = (A1, . . . , AL) and every γ > 0 satisfy

R(FA) ≤ R̂n,γ(FA) +
8

n
+

144‖X‖2 ln(n) ln(2W )

γn

(
L∏
i=1

ρi

(
‖Ai‖σ +

1

L

)) L∑
i=1

(
‖A>i ‖2,1 + 1

L

‖Ai‖σ + 1
L

)2/3
3/2

+
3√
2n

√√√√ln

(
2

δ

)
+ ln

(
max

{
2γ,

1

γ

})
+

L∑
i=1

2 ln(L‖Ai‖σ + 2) + 2 ln(L‖A>i ‖2,1 + 2).

Proof. Recall Lemma A.8 says that with probability at least 1− δ,

R(FA) ≤ R̂n,γ(FA) +
8

n
+

72‖X‖2 ln(2W ) ln(n)

γn

(
L∏
i=1

siρi

)(
L∑
i=1

b
2/3
i

s
2/3
i

)3/2

+ 3

√
ln(2/δ)

2n
.
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We divide up the space as follows. We instantiate the bound of Lemma A.8 for the following values
of γ, s,b:

γ = 2j , si =
ki
L
, bi =

li
L
, j ∈ Z, ki ∈ Z+, li ∈ Z+, i = 1, . . . , L.

Accordingly, to each j,k, l we associate a probability:

δ(j,k, l) =
δ

2|j|
∏L
i=1 ki(ki + 1)li(li + 1)

.

It can be checked that ∑
j∈Z, k, l∈(Z+)L

δ(j,k, l) = 3δ.

Thus, the bound of Lemma A.8 with γ, s,b determined by j,k, l as above and McDiarmid term

3
√

log(2/δ(j,k,l))
2n holds for every j ∈ Z, k, l ∈ (Z+)L with probability at least 1− 3δ.

Now assume the bounds mentioned above all hold. Given A, pick the smallest j ∈ Z such that
γ ≤ 2j and for each i = 1, . . . , L, the smallest ki, li ∈ Z+ such that ‖Ai‖σ ≤ ki

L and ‖A>i ‖2,1 ≤ li
L .

Let C = 72‖X‖2 ln(n) ln(2W )
n

∏L
i=1 ρi. Since 2j−1 < γ, ki

L < ‖Ai‖σ + 1
L ,

li
L < ‖A>i ‖2,1 + 1

L ,

R(FA) ≤ R̂n,2j−1(FA) +
8

n
+ C

1

2j−1

 L∑
i=1

 li
L

∏
m6=i

km
L

2/3


3/2

+ 3

√
ln(2/δ(j,k, l))

2n

≤ R̂n,γ(FA) +
8

n
+ C

2

γ

 L∑
i=1

(‖A>i ‖2,1 +
1

L

) ∏
m6=i

(
‖Ai‖σ +

1

L

)2/3


3/2

+ 3

√
ln(2/δ(j,k, l))

2n
.

Now we bound ln(2/δ(j,k, εl)). Notice that if j ≥ 0, then 2|j| = 2j ≤ 2γ, and if j ≤ 0, then
2|j| = 2−j ≤ 1

γ , so that 2|j| ≤ max{2γ, γ−1}.

ln

(
2

δ(j,k, l)

)
≤ ln

(
2

δ

)
+ ln(2|j|) +

L∑
i=1

ln [ki(ki + 1)] + ln [li(li + 1)]

≤ ln

(
2

δ

)
+ ln

(
max

{
2γ,

1

γ

})
+

L∑
i=1

2 ln(ki + 1) + 2 ln(li + 1)

≤ ln

(
2

δ

)
+ ln

(
max

{
2γ,

1

γ

})
+

L∑
i=1

2 ln(L‖Ai‖σ + 2) + 2 ln(L‖A>i ‖2,1 + 2).

Therefore, with probability at least 1− 3δ, for any γ > 0 and A,

R(FA) ≤ R̂n,γ(FA) +
8

n
+

144‖X‖2 ln(n) ln(2W )

γn

(
L∏
i=1

ρi

) L∑
i=1

(‖A>i ‖2,1 +
1

L

) ∏
m 6=i

(
‖Ai‖σ +

1

L

)2/3


3/2

+
3√
2n

√√√√ln

(
2

δ

)
+ ln

(
max

{
2γ,

1

γ

})
+

L∑
i=1

2 ln(L‖Ai‖σ + 2) + 2 ln(L‖A>i ‖2,1 + 2).
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