
Off-policy policy estimation

Bochao Li
Department of Computer Science

University of Illinois, Champaign and Urbana
Champaign,IL 61820

bochao2@illinois.edu

Abstract

This paper is a review paper on several papers on some research on Reinforcement
Learning with rich observation. To solve this problem a new RL model Contextual
Decision Proces is proposed. And a PAC guaranteed algorithm is given.

1 Introduction

In Reinforcement learning, there is one group of problem where observation is rich, such as images
or texts. In these problems, sophesicated exploration is needed to get sounding result. In RL theory,
this problem already is a solved problem [Brafman and Tennenholtz, 2003][Kearns and Singh,
2002].However, those result is not appliable in practice. This may because those complicated problem
are not MDP problems (for example, Atari games)[Mnih et al.,2015]. In this series of papers , we
propose a new RL setting Which is called CDP. In Nan’s paper, they have proved that most current
RL setting including MDP, POMDP, PSR and LQR can be regarded as special case of CDP. And this
serieis of paper develop PAC guarantee for learning in CDP environment.

This paper can be devided into three parts. First we introduce some basic definitions on terms used in
CDP. And second we shows how some current model setting like MDP or POMDP can be generalized
to CDP. The third part is to gives a PAC algorithm to learn in CDP. The structure of this paper is:
In section 2, we define the terms used in CDP, and make an comparison on related terms in MDP
model. In section 3 we gives 2 examples on how to generalize MDP to CDP model, and how to set
corresponding parameter in CDP model. In section 4 we gives a PAC algorithm for learning in CDP,
under relatively strong assumption. In section 5 we shows the possibility to relieve some assumptions.
And section 6 is a summary and discussion on some related work and possible future work.

2 Model

First of all we need to define the model we study. To make content more understood, we will first
introduce a Markov Decision Process(MDP) model and make comparision upon it.

2.1 Markov Decision Process

Definition 1 (Markov Decision Process(MDP)). A (finite-horizon) contextual Decision Process(CDP)
defined as a tuple(S,A, H, P, r, γ). X is the state space, A is the finite action space, H is horizon of
problem and P = (P∅, P+).P∅ ∈ ∆(S) is distribution over initial contexts and P+ : S ×A → ∆(S)
while P+(x, a, y) = Pr[sh+1 = y|sh = x, ah = a] the transition function. r is the reward r(x, a, y)
is the reward received by taking action a at state x and transit to state y. And γ is a decade factor.

Statistical Learning Theory (ECE543 Spring 2019), Champaign, IL,USA.

Although there are MDP model without the decade factor γ and use average reward 1
H

H∑
h=1

rh or

cumupated reward
H∑
h=1

rh instead with assumption the cumulated reward is finite, but we just need

one model to make comparision.
The value funciton is defined as

V π = EP [

H∑
h=1

γh−1rh|a1:H∼π] (1)

and Q-value funciton is defined as

Q(x, a) = r(x, a, y) + γV ∗(y)P+(x, a, y) (2)

while V ∗ is the optimal value defined as

V ∗ = max
π

V π (3)

2.2 Contextual Decision Process

Definition 2 (Contextual Decision Process(CDP)). A (finite-horizon) contextual Decision Pro-
cess(CDP) defined as a tuple(X ,A, H, P, r). X is the context space, A is the finite action space,
H is horizon of problem and P = (P∅, P+).P∅ ∈ ∆(X) is distribution over initial contexts and
P+ : (X ×A)∗ ×X ×A → ∆(X) while P+(x1, a1 · · ·xh, ah, y) = Pr[xh+1 = y|xh = xh, ah =
ah · · ·x1 = x1, a1 = a1] the transition function.

The main difference between CDP and MDP given above are (1)CDP does not have the decade factor,
and (2) In CDP we do not possess the Markov property. Which means the future is decided by current
and past, not just current
Because we will use cumulated reward in following problem we concern, we add assumption
H∑
h=1

rh ≤ 1 for arbitrarily chosen action sequence as an regularization on the problem. Then we start

to define the term in CDP model that corresponding to Bellman equation for MDP.

Definition 3 (Average Bellman error). we define

ε(f, π, h) = E[f(xh, ah)− rh − f(xh+1, ah+1)|a1:h ∼ π, ah:h+1 ∼ πf] (4)

The meaning of this average Bellman error is that we follows policy π at level 1 to h− 1, and follows
policy at level h to h+ 1.

Notice that in MDP setting, if a Q-value funciton is optimal for Bellman operator, then it has zero
Bellman average error for ∀h ∈ {H} and ∀π. Although in MDP setting we have to redefine the
average Bellman error because usually a decade factor γ is considered.

In the CDP we defined above, we make no assumption on the cardinality of context space, so to learn
in this environment, approximation is necessary. We use value-based RL with function approxination.
We assume we have access to a set of funciton F ⊂ X × A → [0, 1], which has same form as
Q-learning function. without loss of generality, we define f(xH+1, a) ≡ 0 (this is to simplify the
form of Bellman equation). Like typical value-based RL, our goal of learning in this environment is to
get a optimal f∗ ∈ F with respect to a particular Bellman equation defined on CDP, and the optimal
f satisfy that the reward follows the greedy policy of this policy πf∗(x) = arg maxa∈A f(x, a) is
largest.

Definition 4 (Bellman equations and validity of f). Given an tuple (f, π, h), a Bellman equation
means ε(f, π, h) = 0. We define f ∈ F is valid if ε(f, πf ′ , h) = 0 holds for every f ′ ∈ F , h ∈ [H].
We define f ∈ F is θ-valid if the Bellman equation on (f, πf ′ , h) ≤ θ holds for every f ′ ∈ F , h ∈
[H]

Definition 5 (optimal value). We define optimal function as f∗ = arg maxf∈F :f is valid V
πf , the

optimal value V ∗F = V πf∗ And we define θ-optimal function as f∗θ = arg maxf∈F :f isθ-valid V
πf , the

θ-optimal value V ∗F,θ = V
πf∗
θ

2

If we consider problem in MDP setting, we do not need the definition of validity. Because in MDP
setting with decade factor, the Bellman operator is a contractive mapping and the existence of an
optimal Q-function is guaranteed by fixed point Theorem [Baser, 2019].In MDP problem, if both
state space X and action space A are finite, we can calculate the optimal Q-funciton simpliy by
Bellman operator iteration. And in MDP problem with infinite state space X , we still can calculate
the optimal Q-funciton this way if we define The Bellman operator into integral form [Melo, 2008].
However, in CDP problem, the existence of such optimal not guaranteed. And that is why we need to
define the validity (and θ-validity) of problem.
Definition 6 (Bellman factorization and Bellman rank). CDP(X ,A, H, P), and F ⊂ X ×A →[0, 1].
admit Bellman factorization with Bellman rank M and norm parameter ζ, if there exist
νh : F → RM ,ξh : F → RM for each f, f ′ ∈ F , h ∈ [H].
ε(f, πf ′ , h) = 〈νh(f ′), ξh(f)〉 and max

f,f ′∈F
(||νh(f ′)||2 · ||ξh(f)||2) = ζ <∞

We say a CDP and a F admit η-approximate Bellman factorization with Bellman rank M . norm
parameter ζ if there exist νh : F → RM ,ξh : F → RM for each f, f ′ ∈ F , h ∈ [H].
|ε(f, πf ′ , h)− 〈νh(f ′), ξh(f)〉| ≤ η and max

f,f ′∈F
(||νh(f ′)||2 · ||ξh(f)||2) = ζ <∞

We can regard the Bellman rank M as number of "hidden" state (but it is not the "hidden" state we
usually consider in POMDP). And the Bellman factorization is quiet tricky here. We do not directly
explain why we decompose average Bellman rank this way here (although it is crucial), but leave it
to seciton 5.

3 Example of generalization

In this section we show how MDP can be generalized to CDP.

3.1 generalize MDP to CDP

For the MDP setting we consider in section 2.1. Let (X ,A, H, P) be the CDP induced by the MDP
model, with X = S × [H]. It is easy to tell that we can generalize it to a CDP with Bellman rank
|M | = |X |. And For MDP, the average Bellman rank can be factor into [νh(f)]x = Pr[xh =
(x, h)|a1:h−1 ∼ πf] and [ξh(f)]x = E[f(xh, ah)− rh − f(xh+1, ah+1)|xh = (s, h), ah”h+1 ∼ πf]
∀x ∈ X . And because νh is a probability, we have ||νh(·)||1 ≤ 1. Because ξh is a expectation
of reward, and the cumulated reward is bounded by 1, then the difference of reward between two
time step is bounded by 2. Then we have ||ξh(·)||∞ ≤ 2. Then we have ||νh(·)||2 ≤ 1 and
||ξh(·)||2 ≤ 2

√
M . And then we have ζ = 2

√
M 1

4 PAC algorithm for CDP

Our goal is to find an RL algorithm with no dependence on the number of observations |X |, and
a poly nomial dependence on the number of actions K, Bellman rank M , horizon H , and size of
function set |F| = N .
And we define the Probably approximately correct(PAC) for CDP problem as: GivenF two parameter
ε, δ ∈ (0, 1),∃ algorithm product π̂, so that V π̂ ≥ V ∗F − ε with probability at least 1− δ

4.1 assumptions

It is hard to study problem in general CDP model, because context space usually is very large or
infinite, and usually is unavoidable, so to make the problem practice, some assumption is needed.
Here we first introduce a algorithm with relatively strong assumption, and we will see how to relieve
some of them in chapter 5. The assumption we need are:

(1)
H∑
h=1

rh ≤ 1 for arbitrarily chosen action sequence (policy).

(2) we assume the Bellman rank M is known and finite
1because of the page constrain, and the composition of the paper, we only show one example of how to

generalize other model to CDP here. More examples can be find in the origin paper [Jiang et al., 2017]

3

(3) we assume the cardinality of Q-value funciton is finite |F| <∞
(4) the optimal function exist f∗ ∈ F
(5) the function class F we use admit Bellman factorization with Bellman rank M.

Algorithm 1 OLIVE (F ,M, ζ, ε, δ)

1: Collect nest trojectories, actions taken arbitrarily, and save initial contexts{x(i)
1 }

nest
i=1

2: Estimate the predictied value for each f ∈ F : V̂f = 1
nest

nest∑
i=1

f(x
(i)
i , πf (x

(i)
1))

3: F0 ← F
4: for t = 1, 2 · · · do do
5: Choose policy ft = arg maxf∈Ft−1 V̂f , πt = πft
6: Collect neval trajectories{(x(i)

1 , a
(i)
1 , r

(i)
1 · · · , x

(i)
H , a

(i)
H , r

(i)
H)}nevali=1 by following policy πt

7: Estimate ε̂(ft, πt, h) = 1
neval

neval∑
i=1

[ft(x
(i)
h , a

(i)
h)− r(i)

h − ft(x
(i)
h+1, a

(i)
h+1)] for ∀h ∈ [H]

8: if
H∑
h=1

ε̂(ft, πt, h) ≤ 5ε/8 then

9: Terminate and output πt
10: end if
11: Pick any ht ∈ [H] for which ε̂ ≥ 5ε/8H

12: Collect trajectories{(x(i)
1 , a

(i)
1 , r1(i) · · ·x

(i)
H , a

(i)
H , r

(i)
H))}ni=1 following πt for all h 6= hi and

choose a(i)
hi

randomly

13: Estimate ε̂(f, πt, ht) = 1
n

n∑
i=1

1[a
(i)
ht

=πf (x
(i)
ht

)]

1/K (ft(x
(i)
h , a

(i)
h)− r(i)

h − ft(x
(i)
h+1, a

(i)
h+1))

14: Learn Ft = {f : Ft−1 : |ε̂(f, πt, ht)| ≤ φ}
15: end for

4.2 idea of algorithm

First we produce nest traojectories while action taken in an arbitrary manner. and we use these datas
to given an estimation of each f ∈ F . By concentration inequality(we simply use Holder inequality
here), when nest is large enough, we can have an approximated value funciton V̂f for ∀f ∈ F(line
1,2). Then we choose the optimal f and evaluate its average Bellman rank. If we use large enough
trajectories neval, we can have an approximate value to certain accuracy we want. If the optimal f is
valid, then it is done. If the optimal f is not optimal, there must be at least one horizon ht, the average
Bellman error is large. Then we re-estimate the average Bellman error under a different policy at the
horizon ht(because we already know it cannot be optimal policy). And then elimite those impossible
funciton in our funciton set. And during the elliminaiton, we use the ellipsoid method. Ellipsoid
method usually is a little costly, but it will keep the convexity of the area we optimizing, and keep an
exponential optimize rate.

Theorem 1. For any ε, δ ∈ (0, 1), any Contextual Decision Process, function class F
that admits a Bellman factorization with parameters M, ζ run OLIVE with following pa-

rameters: φ = ε
12H
√
M

,nest = 32
ε2 log(6N

δ),neval = 288H2

ε2 log(
12H2M log(6H

√
Mζ
ε)

δ),n =

4608H2MK
ε2 log(

12NHM log(6H
√
Mζ
ε)

δ). With probability at lest 1 − δ, OLIVE halts and return a
policy π̂, V π̂ ≥ V ∗F − ε and the number of episodes required is at most Õ(M

2H3k
ε2 log(Nζδ)), whle Õ

notation ssuppress poly-logarithmic dependence on parameters except N and δ.

4

5 Relieve on assumptions

5.1 relief of assumption (2)

We assume the Bellman rank M is known when running the OLIVE algorithm. However, that is
unrealistic. Also, directly assume Bellman rank to be certain value also may cause problem. For
example, if the Bellman rank is too small, it means our model is over-simplified and model may have
large bias error, which cause the algorithm cannot converge. We use the algorithm GuessM here
to solve this problem. The way to solve this problem is kinds of straight forward. We try M = 1

Algorithm 2 GUESSM (F , ζ, ε, δ)
1: for i = 1, 2 · · · do
2: M ′ ← 2i

3: Call OLIVE(F ,M ′, ε, δ
i(i+1)), with parameters specified on Theorem 1.

4: Terminate the subroutine when t > HM ′
log(6H

√
M′ζ
ε)

log(5/3) in Line 4
5: if a policy π is returned from OLIVER then
6: Then return π
7: end if
8: end for

at first, if it does not work, then try with M = 2 and then M = 4... And when running the i-th
time of OLIVE in the algorithm, we give parameter δ

i(i+1) to the algorithm. The reason why we
set the parameter this way is because we want the cumulated probability to be at least 1 − δ, and
∞∑
i=1

δ
i(i+1) < δ. And because we run the algorithm with exponentially increasing M ′, the algorithm

halt at M ′ ≤ 2M . Then the total number of calls is bounded by log2M + 1. Then the time we need
is at most log(M)× OLIVE time cost, which have same order of complexity under Õ notion.

Theorem 2. For any ε, δ ∈ (0, 1), any CDP and any funciton class F that admit a Bellman
factorization with parameter M, ζ, in we run GuessM(F , ε, δ), then with probability at least 1− δ,
OLIVE halts and returns a policy that satisfies V {hatπ ≥ V ∗F − ε. And the number of episodes
required at most Õ(M

2H3k
ε2 log(Nζδ)).

5.2 relief of assumption (4) (5)

At first we can relieve the assumption (4) and (5). We already defined θ-validity (optimal function)
and η-approximate factorization in previous chapter. Instead of assume optimal function exist, we
can just assume an θ optimal funciton exist. And instead of assume a perfect Bellman factorization
exist, we assume a η-approximate factorization exist. And we have an alternative algorithm called
OLIVER The idea of this algorithm is similar to OLIVE. Only difference is that we loose the bound
and eliminate "bad" funciton as a slower rate.

Theorem 3. For any ε, δ ∈ (0, 1), any COntextual Decision Process and funciotn class F that
adimits a η-approximate Bellman factorizaiton, with parameter M, ζ, η, suppose we run OLIVER
with any θ ∈ [0, 1] and other parameter the same as THeorem 1. With probability at least 1 − δ,
OLIVER halts and returns a policy π that is at most ε + 8H

√
M(θ + η) suboptimal compared to

V ∗F,θ, the θ-optimal value, the number of episodes required is at most Õ(M
2H3k
ε2 log(Nζδ)).

5.3 reilef of assumption (2)

It is possible to havve practice algorithm in CDP with infinite cardinality |F| =∞. If we review our
OLIVE algorithm, we can find that in the algorithm, only two term relevant to function f is used
in algorithm OLIVE. The first thing we use is the optimal policy for f πf . And the second think
we consider is a mapping gf : x → f(x, πf (x)), which is a V-value function. And each function
f ∈ F can be decomposed to a pair of funciton (πf , gf). This gives us possible way to solve problem
with infinite cardinality Q-value funciton F . Because we actually do not use all property of f in our
algorithm (basically we only use the optimal funciton). The policy space Π and V-value funciton

5

Algorithm 3 OLIVER (F , θ,M, ζ, η, ε, δ)

1: ε′ = ε+ 2H(3
√
M(θ + η) + η)

2: Collect nest trojectories, actions taken arbitrarily, and save initial contexts{x(i)
1 }

nest
i=1

3: Estimate the predictied value for each f ∈ F : V̂f = 1
nest

nest∑
i=1

f(x
(i)
i , πf (x

(i)
1)

4: F0 ← F
5: for t = 1, 2 · · · do do
6: Choose policy ft = arg maxf∈Ft−1 V̂f , πt = πft
7: Collect neval trajectories{(x(i)

1 , a
(i)
1 , r

(i)
1 · · · , x

(i)
H , a

(i)
H , r

(i)
H)}nevali=1 by following policy πt

8: Estimate ε̂(ft, πt, h) = 1
neval

neval∑
i=1

[ft(x
(i)
h , a

(i)
h)− r(i)

h − ft(x
(i)
h+1, a

(i)
h+1)] for ∀h ∈ [H]

9: if
H∑
h=1

ε̂(ft, πt, h) ≤ 5ε′/8 then

10: Terminate and output πt
11: end if
12: Pick any ht ∈ [H] for which ε̂ ≥ 5ε′/8H

13: Collect trajectories{(x(i)
1 , a

(i)
1 , r1(i) · · ·x

(i)
H , a

(i)
H , r

(i)
H))}ni=1 following πt for all h 6= hi and

choose a(i)
hi

randomly

14: Estimate ε̂(f, πt, ht) = 1
n

n∑
i=1

1[a
(i)
ht

=πf (x
(i)
ht

)]

1/K (ft(x
(i)
h , a

(i)
h)− r(i)

h − ft(x
(i)
h+1, a

(i)
h+1))

15: Learn Ft = {f : Ft−1 : |ε̂(f, πt, ht)| ≤ φ+ θ}
16: end for

space G might be finite. To properly define the dimension of function class πf and gf , we need to
review some basic and advance dimension measure in statistical learning.

Definition 7 (VC-dimension). Define H ⊂ X → {0, 1}, we define HX = {h(x1), · · · , h(x|X| :
h ∈ H}. The VC-dimension for H, V C − dim(H) is defined as the maximal cardinality of a set
X = {x1, ·, xn} ⊂ X , |HX | = 2|X| (or we say X is shattered byH)

Definition 8 (Pseudo-shattering). Define H ⊂ X → R. We say a series of feature x =
(x1, x2 · · ·xm), xiinX for all i is Pseudo-shattered byH if there exists a vector ξ = (ξ1, ξ2 · · · ξm),
ξiinR for all i(called “witness"), s.t. for all b ∈ {0, 1}m = (b1, b2 · · · bm), there exist hb ∈ H, such
that 1[hb(xi)− ri] = bi for all i.

Definition 9 (Pseudo dimension). H ⊂ X → R, the Pseudo-dimension Pdim(H) is the cardinality
of the largest set that can pseudo-shattered byH.

Pseudo dimension can be regarede as an extension of VC-dimension. Especially, if we defineH+ =
{(x, ξ)→ 1[h(x) > ξ] : h ∈ H} ⊂ X × R→ {0, 1}, then we have Pdim(H) = V C − dim(H+).

Definition 10 (Natarajan dimension). Suppose X is a feature space and Y is a finite label space.
Given Hypothesis classH ⊂ X → Y , its Nataranjan dimension is defined as maximum cardinality
of a set A ⊂ X , which satisfy: there exist h1, h2 : A → Y (1) ∀x ∈ A, h1(x) 6= h2(x). and (2)
∀B ⊂ A,∃h ⊂ H, ∀x ∈ B, h(x) = h1(x) and ∀x ∈ A \B, h(x) = h2(x)

With these definiton, it is easy to see that we can bound the dimension of funciton πf using Nataranjan
dimension and bound the dimension of funciotn gf using Pseudo dimension. And notice that in the
time complexity we calculate for OLIVER algorithm, the dependence on |F| = N is log(N). This
way, we can simplify it to sum of log(dΠ) which is the log of dimension of policy space and log(dG),
which is the dimension of the V-value funciton.

Theorem 4. Π ⊂ X → A,withNdim(Π) ≤ dΠ <∞, G ⊂ X → [0, 1], with Pdim(G) ≤ dG <∞.
For any ε, δ ∈ (0, 1), any Contextual Decision Process with policy space Π and function space G,
(Π,G) admit a Bellman factorization with parameterM, ζ, if we run OLIVER with appropriate
parameters, with probability at least 1− δ, OLIVER halts and return a policyπ̂, V π̂ ≥ V ∗F − ε and
the number of episodes required is at most Õ(M

2H3K2

ε2 (dΠ + dG + log(ζδ))

6

6 Summary

This paper basically review the result in Nan’s paper about Contextual Decision Model [Jiang, 2017],
a general model that can include main model in Reinforcement Learning like MDP, POMDP and
PSR. The term Contextual Decision Model is first proposed by Akshay [Krishnamurthy et al.,2016].
However, the first CDP actually is a tree-form POMDP. It keeps the assumption of Markov property,
and assume that the transition between state is determistic. Several work has been done on these
series of work. Christoph proves that the OLIVE/OLIVER algorithm proposed in Nan’s paper is not
Oracle efficient, and propose an oracle efficient algothm that based on Akshay’s CDP setting[Dann
et al.,2018]. And further work has been done on ivestigate an Model-based problem in CDP setting
[Sun et al.,2019]. This paper’s CDP is a little different from all current model. Basically it keeps the
Markov property, but remove the assumption that the transition need to be deterministic.

Generally, no concrete work has been done in this field. Only primal result has been given and more
work needs to be done in the future. Nan’s paper gives a relatively statistical efficient algorithm to
learn in CDP, but that is the only work done on this particular problem, and its efficientless in oracle
has been proved in later work. While oracle efficient result usually relies on more strict assumption.
Also we have to notice that although learning in rich observation environment is generally hard, work
in it is worthy. Efficient decompsition will make cost to learning in rich observation environment
decrease sharply. For example, if we consider an Mario game. If we learn to play it using image or
video, we need to analyze thousands of data every frame. However, if we learn the game play of the
game (which is the "hidden" state of this problem), we can know that there are only dozens of move
Mario can make and it will decrease the hardness of learning rapidly. And maybe this decomposition
is the reason why human can learn much faster than Machine.

Possible future work may be combining Information Theory knowledge to RL problem. No matter
which exactly model is used. When considering RL problem with rich observation, usually "hidden"
states or similar structure need to be concerned (like discussed in previous section, the Bellman
rank proposed in Nan’s paper also can be regarded as a different form of "hidden" states). And
to effectively learning in this environment, we need sophesiticate method to transfer information
we get from observation samples to information in "hidden" states. Apart from this, kernel related
method may be useful. Because in RL problem with rich observation, we have enough data sample to
generate sounding kernel, and one advantage of kernel related method is it build model irrelevant to
the size of observation, which is large or even infinite. Recent work on applicaiton of Reproducing
Kernel Hilber Space(RKHS)[Fukumizu et al.,2013] has shows that probability can be viewed as
kernel mean(point) on RKHS. And Relation between probability can be expressed as product kernel
covariance. A work on adapt Kernel Bayes’ Rule on POMDP may provide inspiration on future work
in RL with rich observation problem [Nishiyama et al.,2012]. In addition to the above two math base
consideration, consider the Mario game example. An intuition to solve this problem may be relying
on large memory. When human learn to play new game or face new task, usually human can learn the
whole rule within a few attempts. And the reason why human learn this fast may be because human
has large memory and can compare the current task with large number of past relevant experiences.

7

Reference

Krishnamurthy, Akshay, Alekh Agarwal, and John Langford. "PAC reinforcement learning with rich
observations." Advances in Neural Information Processing Systems. 2016.

R. I. Brafman and M. Tennenholtz. R-max – a general polynomial time algorithm for near-optimal
reinforcement learning. JMLR, 2003.

Dann, Christoph, et al. "On Oracle-Efficient PAC RL with Rich Observations." Advances in Neural
Information Processing Systems. 2018.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. MLJ, 2002.

Fukumizu, Kenji, Le Song, and Arthur Gretton. "Kernel Bayes’ rule: Bayesian inference with
positive definite kernels." The Journal of Machine Learning Research 14.1 (2013): 3753-3783.

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature
518.7540 (2015): 529.

Jiang, Nan, et al. "Contextual decision processes with low Bellman rank are PAC-learnable."
Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

Sun, Wen, et al. "Model-Based Reinforcement Learning in Contextual Decision Processes." arXiv
preprint arXiv:1811.08540 (2018).

Nishiyama, Yu, et al. "Hilbert space embeddings of POMDPs." arXiv preprint arXiv:1210.4887
(2012).

8

	Introduction
	Model
	Markov Decision Process
	Contextual Decision Process

	Example of generalization
	generalize MDP to CDP

	PAC algorithm for CDP
	assumptions
	idea of algorithm

	Relieve on assumptions
	relief of assumption (2)
	relief of assumption (4) (5)
	reilef of assumption (2)

	Summary

