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1 Introduction

Follow the Leader algorithms provide a natural extension of offline optimization for on-
line learning. Recently, it was shown in [1] that the Follow the Perturbed Leader (FTPL)
algorithm achieves regret that scales as O(

√
T ) for Lipschitz, non-convex loss functions in

the one-dimensional case. It was later shown in [4] that the O(
√
T ) scaling holds in the

general d-dimensional case as well. Interestingly, these regret bounds can also be shown
for convex loss functions [3]. Regret bounds are derived in the 1-dimensional and general
d-dimensional settings, with the assumption that the player has access to an α-accurate
optimization oracle. It would seem that the convexity of the loss functions is not the crucial
factor that makes online learning more difficult than offline statistical learning. In light of
recent studies that interpret Generative Adversarial Network (GAN) training as an online
learning problem [1], this is an encouraging result for good adversarial generative models.

1.1 Online Optimization

At each time t, the player selects an action ft from F ⊆ H, where H is a d-dimensional
Hilbert space and F has diameter D. The adversary then chooses an action zt from Z, and
the player incurs loss `t(ft) := `(ft, zt) where ` : F ×Z → R+. Assume that ` is L-Lipschitz
in f with respect to the L1-norm, i.e. ∀f1, f2 ∈ F and any t, |`t(f1)− `t(f2)| ≤ L‖f1 − f2‖1.

The player aims to choose a sequence of actions (ft) to minimize their regret, which is
the cumulative loss with respect to the best fixed strategy f ∗ = inff∈F

∑T
t=1 `t(f):

RT ((ft)) :=
T∑
t=1

`t(ft)−
T∑
t=1

`t(f
∗) (1)

It is assumed that the player is able to evaluate the loss functions and solve optimization
problems of the form

f̂ = arg min
f∈F

{ k∑
i=1

`i(f)− σ>f
}

(2)
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with α-accuracy; that is, for some α ≥ 0 the resulting f̂ satisfies

k∑
i=1

`i(f̂)− σ>f̂ ≤ min
f∈F

{ k∑
i=1

`i(f)− σ>f
}

+ α (3)

2 Follow the Leader Algorithms

Follow the Leader (FTL) algorithms extend offline optimization algorithms to the online
case, and is used as a framework for understanding to what extent online problems are harder
than static problems in statistical learning. At time t, the player chooses the action ft that
incurs the least historical risk, by solving optimization problems of the form

ft = arg min
f∈F

{ t−1∑
i=1

`t(f) + Ω(f)
}

(4)

The ”leader” is the best f ∈ F based on the player’s observations thus far, and Ω(f) is a
regularization term. In a sense, FTL is a natural extension of ERM to the online setting.
As will be seen, the regularization term Ω is necessary to establish desirable regret bounds
for FTL that are sublinear in T .

Lemma 1 (Be the Leader). FTRL, as given in Equation 4, satisfies the following regret
bound:

RT ((ft)) ≤ [Ω(f ∗)− Ω(f2)] + L
T∑
t=1

‖ft − ft+1‖1 + αT (5)

The lemma and proof are similar to those of [3], modified for the α-accurate player, as
in [4]. The proof is given in the Appendix.

3 Follow the Perturbed Leader

Assume that the adversary is oblivious: a fixed sequence `1, ...`T is choisen beforehand,
and the adversary cannot adapt to the player’s choice of (ft). This simplifies the analysis
since the entries of σ can be drawn all at once at the beginning, and as a result Lemma 1
can be used to establish an expected regret bound. However, this restriction also does not
change the main results: it was shown in [2] that regret bounds found in the oblivious case
are equivalent asymptotically to those found in the general adversarial case.

Follow the Perturbed Leader (FTPL) introduces a stochastic regularization:

ft = arg min
f∈F

t−1∑
i=1

`t(f) + σ>f (6)

The noise is exponentially distributed i.i.d. with parameter η: σ ∼ exp(η)d.
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3.1 The 1-dimensional Case (d = 1)

Theorem 1 (Scalar Regret Bound). Loss functions are L-Lipschitz, not necessarily convex.
Consider the case d = 1. α-accurate FTPL satisfies the following expected regret bound:

E[RT ((ft))] ≤
D

η
+

1000

9
L2DTη + 2αT (7)

Moreover, for the choice η =
√

9
1000L2T

,

E[RT ((ft))] ≤
2

3

√
1000DL

√
T + 2αT (8)

This result shows that in the 1-d case, FTPL achieves expected regret that scales as
O(
√
T ), which is as good as the rate in the convex case. Furthermore, Equation 7 intu-

itively demonstrates the role of the additive noise. Smaller values of η correspond to higher
noise levels, since the noise is exponentially distributed with parameter η. Increasing noise
stabilizes the player’s actions, but with an accuracy penalty. The notation ft(σ) is used to
emphasize that ft(σ) was chosen for a particular instantiation of σ. We first begin with a
few preliminaries.

Definition 1 (One-step differences). For each t and each dimension i, denote the differences:

f
(i)
min,t(σ) = min{f (i)

t (σ), f
(i)
t+1(σ)} (9)

f
(i)
max,t(σ) = max{f (i)

t (σ), f
(i)
t+1(σ)} (10)

The superscripts are dropped in the 1-d case, since the dimension is clear in context.

Lemma 2 (Monotonicity Property [4]). Consider α-accurate FTPL. Denote the i-th stan-
dard basis vector as ei. At time t, the player chooses ft(σ). Then for any c ≥ 0,

f
(i)
t (σ + cei) ≥ f

(i)
t (σ)− 2α

c
(11)

Lemma 3 (Stability w.r.t. σ [4]). Denote the i-th standard basis vector as ei. Suppose that

‖ft(σ)− ft+1(σ)‖1 ≤ 10d|f (i)
t (σ)− f (i)

t+1(σ)|. Then for a choice of σ′ = σ + 100Ldei,

f
(i)
min,t(σ

′) ≥ f
(i)
max,t(σ)− 1

10
|f (i)
t (σ)− f (i)

t+1(σ)| − 3α

100Ld
(12)

The purpose of Definition 1 is to establish how quickly the player’s choices are able to
change between time t and t + 1, for a given noise level. Lemma 2 relates changes in noise
level to changes in the player’s action. It is not directly used in the proof for the 1-d case,
but is used to prove Lemma 3 as well as Theorem 2. The proof for both the 1-d and general
d-dimensional case relies on Lemma 3. This lemma is used to establish a bound on the
expected stability of the player’s actions between times, in the style of Lemma 1. It does so
by characterizing how the player’s actions change in response to change in noise, from σ to
σ′.
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Note that Lemma 3 and its proof require a good choice of σ′ relative to σ. As presented,
it uses the choices presented in [4], which gives a version of the lemma that is able to prove
O(
√
T ) bounds on the regret. This choice of σ, σ′ are used to show a regret bound for the

1-d case similar to the bound presented in [1], except extended to the case where the player’s
optimization is only α-accurate, and with the version of Lemma 3 presented here.

Also, the version of Lemma 3 that appears in [1] does not contain the condition on
‖ft(σ)− ft+1(σ)‖1. Including this condition changes the structure of the proof between the
1-dimensional and d-dimensional versions of the regret bound, but enables an O(

√
T ) bound

on the regret, which was not achievable in [1]. Proofs of Lemmas 2 and 3 use α-optimality
condition given in Equation 3 as well as the fact that the loss functions are L-Lipschitz.

Proof of Theorem 1. For an oblivious adversary, the expected regret of FTPL can be bounded
using Lemma 1:

E[RT ((ft))] ≤ E[σ(f1 − f ∗)] + L

T∑
t=1

E
[
|ft − ft+1|

]
+ αT (13)

≤ D

η
+ L

T∑
t=1

E
[
|ft − ft+1|

]
+ αT (14)

The second inequality is true since σ is exponentially distributed and D is the diameter of
F . The term E

[
|ft − ft+1|

]
can now be bounded using Lemmas 2 and 3. Fix a noise value

σ and σ′ = σ + 100L. Now we have

E
[
|ft(σ)− ft+1(σ)|

]
= E[fmax,t(σ)]− E[fmin,t(σ)] (15)

One way to bound the right hand side is to find a lower bound of E[fmin,t(σ)] using E[fmax,t(σ)].

E[fmin,t] = E[fmin,t(σ)|σ < 100L]P [σ < 100L] + E[fmin,t(σ)|σ ≥ 100L]P [σ ≥ 100L]

= E[fmin,t(σ)|σ < 100L](1− e−η100L) + E[fmin,t(σ
′)|σ′ ≥ 0]e−η100L

(a)

≥ (E[fmax,t(σ)]−D)(1− e−η100L) + E[fmin,t(σ
′)]e−η100L

(b)

≥ (E[fmax,t(σ)]−D)(1− e−η100L) +
[
E[fmax,t(σ)]−

E
[
|ft(σ)− ft+1(σ)|

]
10

− 3α

100L

]
e−η100L

= E[fmax,t(σ)]−D(1− e−η100L)−
[E[|ft(σ)− ft+1(σ)|

]
10

+
3α

100L

]
e−η100L

(c)

≥ E[fmax,t(σ)]− η100LD −
[E[|ft(σ)− ft+1(σ)|

]
10

+
3α

100L

]

(a) uses the fact that F has diameter D, (b) uses Lemma 3, and (c) the fact that ex ≥ 1 +x.
Note that in the 1-d case, the condition in Lemma 3 holds trivially. Combining with Equation
15 gives

E
[
|ft(σ)− ft+1(σ)|

]
≤ 1000

9
LDη +

α

30L
(16)

Plugging into Equation 14 gives Equation 7 as desired, and optimizing over η gives Equation
8.
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3.2 The General d-dimensional Case

The proof for the 1-dimensional case can be extended to the d-dimensional case by starting
with the fact that E[‖ft−ft+1‖1] =

∑d
k=1 E[|ft−ft+1|] and finding a bound for each dimension

each separately. Similar to the 1-d case, the idea is to use Lemma 3 to bound this term.
Lemma 4 bounds the regularization terms, and is proved in the Appendix.

Theorem 2 (Non-convex FTPL Regret Bound). Loss functions are L-Lipschitz, not neces-
sarily convex. Consider the case d = 1. α-accurate FTPL satisfies the following expected
regret bound:

E[RT ((ft))] ≤
D(log d+ 1)

η
+ 125L2d2DTη + 2αT (17)

Moreover, for the choice η =
√

log d+1
125L2d2T

,

E[RT ((ft))] ≤ 2
√

125(log d+ 1)LdD
√
T + 2αT (18)

Lemma 4. Fix f1, f2 ∈ F , where F has diameter D, and suppose that σ ∼ exp(η)d. Then

E[σ>(f1 − f2)] ≤
D(log(d) + 1)

η
(19)

Proof of Theorem 2. The proof proceeds almost identically to that for the 1-d case, except
that a couple of modifications are added in order to make use of Lemma 3. Combining
Lemmas 1 and 4 gives

E[RT ((ft))] =
D(log(d) + 1)

η
+ L

T∑
t=1

E
[
‖ft − ft+1‖1

]
+ αT (20)

The idea is to start by considering each dimension of σ separately, holding the others fixed.
To this end, define for each dimension i = 1, ..., d:

E\i[|f (i)
t (σ)− f (i)

t+1(σ)|] := E
[
|f (i)
t (σ)− f (i)

t+1(σ)|
∣∣∣{σj}j 6=i] (21)

If a bound can be found for this conditional expectation that holds for each dimension i,
it will also hold for the unconditioned expectation. Considering each dimension separately
allows for a reduction to the 1-d case. In order to make use of Lemma 3, define the following
event, as well as its associated conditional probability:

E = {σ : ‖ft(σ)− ft+1(σ)‖1 ≤ 10d|f (i)
t (σ)− f (i)

t+1(σ)|} (22)

P\i[E ] = P [E|{σj}j 6=i] (23)

Analogous to the 1-d case, the goal is to find a lower bound on E\i[fmin,t(σ)] using
E\i[fmax,t(σ)], since applying Equation 15 gives:

E\i
[
|f (i)
t (σ)− f (i)

t+1(σ)|
]

= E\i[f (i)
max,t(σ)]− E\i[f (i)

min,t(σ)] (24)
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Fix σ and σ′ = σ + 100Ldei.

E\i[f (i)
min,t(σ)] = E\i[f (i)

min,t(σ)|σi < 100Ld]P [σi < 100Ld] + E\i[f (i)
min,t(σ)|σi ≥ 100Ld]P [σi ≥ 100Ld]

= E\i[f (i)
min,t(σ)|σi < 100Ld](1− e−η100Ld) + E\i[f (i)

min,t(σ
′)]e−η100Ld

≥ (E\i[f (i)
max,t(σ)]−D)(1− e−η100Ld) + E\i[f (i)

min,t(σ
′)]e−η100Ld (25)

The inequality uses the fact that F has diameter D, as was done in the 1-d case. The second
conditional expectation can be expanded:

E\i[f (i)
min,t(σ

′)] = E\i[f (i)
min,t(σ

′)|E ]P\i[E ] + E\i[f (i)
min,t(σ

′)|Ec]P\i[Ec] (26)

The individual expectations can be bounded using Lemmas 3 and 2 respectively, as well as
the definition of Ec:

E\i[f (i)
min,t(σ

′)|E ] ≥ E\i
[
f
(i)
max,t(σ)− 1

10
|f (i)
t (σ)− f (i)

t+1(σ)| − 3α

100L

∣∣∣E] (27)

E\i[f (i)
min,t(σ

′)|Ec] ≥ E\i
[
f
(i)
min,t(σ)− 2α

100Ld

∣∣∣Ec]
≥ E\i

[
f
(i)
max,t(σ)− 1

10d
‖ft(σ)− ft+1(σ)‖1 −

2α

100Ld

∣∣∣Ec] (28)

Combining equations 25, 26, 27, and 28, and noting that the dependencies on E and Ec
cancel gives:

E\i[f (i)
min,t(σ)] ≥ (E\i[f (i)

max,t(σ)]−D)(1− e−η100Ld)

+ e−η100Ld

(
E\i
[
f
(i)
max,t(σ)− 3α

100Ld

]
− E\i

[ 1

10

∣∣f (i)
t (σ)− f (i)

t+1(σ)
∣∣+

1

10d
‖ft(σ)− ft+1(σ)‖1

])
(29)

Again using the fact that ex ≥ 1 + x,

E\i[f (i)
min,t(σ)] ≥ E\i[f (i)

max,t(σ)]− η100LdD − 3α

100Ld

− E\i
[ 1

10

∣∣f (i)
t (σ)− f (i)

t+1(σ)
∣∣+

1

10d
‖ft(σ)− ft+1(σ)‖1

]
(30)

Combining with Equation 21 and rearranging gives a result similar to in the 1-d case,

E\i
∣∣f (i)
t (σ)− f (i)

t+1(σ)
∣∣ ≤ 1000

9
ηLdD +

1

9d
E\i‖ft(σ)− ft+1(σ)‖1 +

α

30Ld
(31)

Since this holds for every i with σj, j 6= i fixed, this bound also holds for the unconditioned
expectation. Summing over the d dimensions gives

E
∥∥f (i)

t (σ)− f (i)
t+1(σ)

∥∥
1
≤ 125ηLd2D +

α

20L
(32)

Plugging this into Equation 20 gives Equation 17 and optimizing over η gives Equation
18.
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4 Appendix

4.1 Proof of Lemma 1

The regret of playing the sequence (ft) is

RT ((ft)) =
T∑
t=1

[`t(ft)− `t(f ∗)]

=
T∑
t=1

[`t(ft)− `t(ft+1)] +
T∑
t=1

[`t(ft+1)− `t(f ∗)]

≤ L
T∑
t=1

‖ft − ft+1‖1 +
T∑
t=1

[`t(ft+1)− `t(f ∗)]

≤ L
T∑
t=1

‖ft − ft+1‖1 + [Ω(f ∗)− Ω(f2)] + αT

The first inequality follows from the fact that ` is L-Lipschitz, and the second can be shown
by induction. Consider the base case T = 1. Since f2 is an α-accurate minimizer, for any f ∗

`1(f2)− Ω(f2) ≤ inf
f

[`1(f)− Ω(f)] + α

≤ `1(f
∗)− Ω(f ∗) + α

and therefore `1(f2)− `1(f ∗) ≤ [Ω(f2)− Ω(f ∗)] + α.
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Next, suppose
∑T

t=1[`t(ft+1)− `t(f ∗)] ≤ [Ω(f ∗)−Ω(f2)] +αT for any f ∗ and T ≤ T0− 1.

T0−1∑
t=1

`t(ft+1)
(a)

≤
[ T0−1∑
t=1

`t(fT0+1) + [Ω(fT0+1)− Ω(f2)] + α(T0 − 1)
]

+ `T0(fT0+1)

=
[ T0∑
t=1

`t(fT0+1)− Ω(fT0+1)
]

+ Ω(f2) + α(T0 − 1)

(b)

≤
T0∑
t=1

`t(fT0+1) + [Ω(f2)− Ω(fT0+1)] + αT0

=

T0∑
t=1

`t(f
∗) + [Ω(f ∗)− Ω(f2)] + αT0

(a) uses the assumption, and (b) uses the fact that fT0+1 is an α-approximate minimizer of
RT0 .

4.2 Proof of Lemma 4

E[σ>(f1 − f2)] ≤ E[‖σ>(f1 − f2)‖1]
(a)

≤ E[‖σ‖∞ · ‖f1 − f2‖1]
(b)

≤ E[‖σ‖∞] ·D
(c)

≤ D(log(d) + 1)

η

(a) follows from Hölder’s Inequality, and (b) from the restriction on F . (c) uses the fact that

E‖σ‖∞ ≤ D(log d+1
η

, for exponential σ [1].
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