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Abstract

Multi-armed bandit problems provide a framework to model sequential
decision problems with an inherent exploration and exploitation trade-
off. One of the earliest algorithms for solving the multi-armed bandit
problem is Thompson Sampling. It is a randomized algorithm based on
Bayesian ideas. A generalization of Thompson Sampling for the stochastic
contextual multi-armed bandit problem with linear payoff functions with
contexts provided by an adaptive adversary has been studied in [5]. A high

probability bound of O( d
2

ε

√
T 1+ε) for a time horizon T for any 0 < ε < 1

has been provided in [5]. This bound is close to the theoretical bound of
O(d

√
T ) provided for this problem.

1 Introduction

Multi-armed bandit problems model the exploration-exploitation trade-off in-
herent in sequential decision problems. Many versions of the multi-armed bandit
framework have emerged over the decades to solve a variety of problems. The
general setting of the multi-armed problem is that there are N arms available
to a player and the player at each time upon choosing an arm receives a reward.
The player doesn’t have any prior knowledge about the reward distributions.
The goal of the policy employed by the user is to maximise the rewards accumu-
lated over time. One of the most commonly used frameworks is the stochastic
multi-armed bandit. In this setting the reward of each arm is in [0, 1] with
unknown expectation values and reward distributions. Let µi denote the mean
reward of arm i and µ∗ = arg maxi∈[N ] µi. The regret accumulated until time
horizon T is given by:

R(T ) = Tµ∗ −
T∑
i=1

E
[
µa(t)

]
(1)

where a(t) is the action taken by the player at time t. The player typically
faces an “exploration versus exploitation dilemma” : at time t, she can take
advantage of the information she has gathered, by choosing the so-far best
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performing arm, but she has to consider the possibility that the other arms are
actually under-rated and she must play sufficiently often all of them. In the
seminal work of Lai and Robbins [1], a lower bound of O(log T ) was proved for
the stochastic multi-armed bandit setting and a set of algorithms achieving this
lower bound for parametric families was proposed. However these algorithms
weren’t computationally efficient.

Two classes of algorithms has emerged over the decades to solve the multi-
armed bandit. The first one is a frequentist approach that usually involves
calculating an upper confidence bound (UCB) for the mean rewards of the arms
in addition to their estimates. At each time t the player plays the arm with
highest UCB. The kl-UCB algorithm proposed by Garivier and Cappe [2] has
been shown to be order optimal. The other class of algorithms takes a Bayesian
approach to solving the multi-armed bandit problem. Thompson Sampling is
one of the oldest heuristics in the class of randomized probability matching
algorithms. It was proposed by W.R. Thompson and dates back to 1933. The
basic idea is to assume a simple prior on the parameters of the rewards of every
arm and at every time step, play an arm according to its posterior probability
of being the best arm. Although Thompson Sampling algorithms is a Bayesian
approach, the algorithm and the analysis provided by Agarwal and Goyal [3]
apply to the prior-free stochastic multi-armed bandit model where parameters of
the reward distribution of every arm are fixed, though unknown. The assumed
Bayesian priors could be interpreted as the current knowledge the algorithm has
about the arms.

Several studies have shown the efficacy of Thompson Sampling and that
Thompson Sampling is more robust to delayed or batched feedback than other
methods. Though TS has been empirically shown to perform optimally, the first
theoretical guarantee of O(log T ) for the stochastic multi-armed bandit case was
provided by Agarwal and Goyal [3].

In the contextual multi-armed bandit problem, in each round, the player is
presented with the choice of N arms. Before making the choice of which arm to
play, the learner sees d-dimensional feature vectors bi for each arm i, referred
to as context. This context vector is provided by an adaptive adversary that
can observe the previous plays and rewards obtained by the user. The player
uses these feature vectors and rewards of the arms played in the past to make
the choice of arm to play in the current round. Over time, the learner’s aim is
to gather enough information about how the feature vectors and rewards relate
to each other, so that the player can predict with some certainty, which arm is
likely to give the best reward in relation to the feature vectors.

In the contextual bandits setting with linear payoff functions, the player
competes with the class of all linear predictors on the feature vectors. The pre-
dictor is defined by a d-dimensional parameter µ ∈ Rd and the predictor ranks
the arms according to bTi µ. In [5], the stochastic contextual bandit problem
is considered under linear realizability assumption, i.e., there is an underlying
unknown parameter µ ∈ Rd such that the expected reward for each arm i, given
the context bi is bTi µ. Under this assumption, the player’s aim is to learn this
underlying parameter.
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The contextual bandit problem with linear payoffs is a widely studied prob-
lem in statistics and machine learning often under different names as mentioned
by Chu et al. (2011): bandit problems with co-variates (Woodroofe, 1979;
Sarkar, 1991), associative reinforcement learning (Kaelbling, 1994), associative
bandit problems (Auer, 2002; Strehl et al., 2006), bandit problems with expert
advice (Auer et al., 2002), and linear bandits (Dani et al., 2008; Abbasi-Yadkori
et al., 2011; Bubeck et al., 2012). The name contextual bandits was coined in
Langford & Zhang (2007).

A lower bound of O(d
√
T ) for this problem was given by Dani et al. [4],

when the number of arms is allowed to be infinite. Abbasi-Yadkori et al.
(2011) analyze a UCB-style algorithm and provide a regret upper bound of
O(d log T

√
T +
√
dT log Tδ). Apart from the dependence on ε, the bounds pre-

sented in [5] are essentially away by a factor of d from the lower bound.
In [5], a natural generalization of TS for contextual bandits using Gaussian

priors for the parameters of the reward functions and Gaussian likelihood func-
tion for the reward distribution are used. A novel martingale-based analysis
technique is used to demonstrate that Thompson Sampling achieves high prob-
ability, near optimal regret bounds for stochastic contextual bandits with linear
payoffs.

While the regret bounds provided in [5] do not match or better the best
available regret bounds for the extensively studied problem of linear contex-
tual bandits, the results demonstrate that the natural and efficient heuristic
of Thompson Sampling can achieve theoretical bounds that are close to the
best bounds. The main contribution of [5] is to provide new tools for analysis
of Thompson Sampling algorithm for contextual bandits, which despite being
popular and empirically attractive, has eluded theoretical analysis.

2 Thompson Sampling

The priors of the Thompson Sampling algorithm are updated according to the
Bayes rule. If the likelihood function of reward r with parameter µ is denoted
by pµ(r) and the prior for parameter µ given by q(µ), then the posterior update
according to the Bayes rule is given by:

q(µ|r) =
pµ(r)q(µ)∫

pµ(r)q(µ)dν(µ)
(2)

The Thompson Sampling approach gives an intuitive algorithm for the case
of Bernoulli bandits, where the rewards can be either 0 or 1 and for arm
i the probability of success is µi. The algorithm maintains Bayesian priors
on the Bernoulli means µ′is. It employs the class of Beta distributions as
the priors for the µ′is. Beta distribution turns out to be a very convenient
choice of priors for Bernoulli rewards. The beta distributions form a fam-
ily of continuous probability distributions on the interval (0, 1). The pdf of
Beta (α, β), the beta distribution with parameters α > 0, β > 0, is given by

f(x;α, β) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1. The mean of Beta(α, β) is α/(α + β);
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and as is apparent from the pdf, higher the α, β, tighter is the concentration of
Beta(α, β) around the mean. Beta distribution is useful for Bernoulli rewards
because if the prior is a Beta(α, β) distribution, then after observing a Bernoulli
trial, the posterior distribution is simply Beta(α + 1, β) or Beta(α, β + 1), de-
pending on whether the trial resulted in a success or failure, respectively.

The Thompson Sampling algorithm initially assumes arm i to have prior
Beta(1, 1) on µi, which is natural because Beta(1, 1) is the uniform distribution
on (0, 1). At time t, having observed Si(t) successes (reward = 1) and Fi(t)
failures (reward = 0) in ki(t) = Si(t) + Fi(t) plays of arm i, the algorithm
updates the distribution on µi as Beta(Si(t) + 1, Fi(t) + 1). The algorithm
then samples from these posterior distributions of the µi’s, and plays an arm
according to the probability of its mean being the largest.

Algorithm 1 Thompson Sampling for Bernoulli bandits

For each arm i = 1, . . . , N , set Si = 0, Fi = 0
for t = 1, 2, . . . , do

For each arm i = 1, . . . , N , sample θi(t) from the Beta(Si + 1, Fi + 1) distri-
bution.
Play arm i(t) := arg maxi θi(t) and observe reward rt.
If r = 1, then Si = Si + 1, else Fi = Fi + 1.

end

The Bernoulli Thompson sampling algorithm is adapted to the general stochas-
tic bandits case, i.e. when the rewards for arm i are generated from an arbitrary
unknown distribution with support [0, 1] and mean µi, in a way that allows to
reuse the analysis of the Bernoulli case. The TS is adapted so that after observ-
ing the reward r̃t ∈ [0, 1] at time t, it performs a Bernoulli trial with success
probability r̃t. Let random variable rt denote the outcome of this Bernoulli trial,
and let {Si(t), Fi(t)} denote the number of successes and failures in the Bernoulli
trials until time t. The remaining algorithm is the same as for Bernoulli bandits.

3 Contextual Bandit Setup

There are N arms. At time t = 1, 2, . . ., a context vector bi(t) ∈ Rd, is revealed
for every arm i. These context vectors are chosen by an adversary in an adaptive
manner after observing the arms played and their rewards up to time t− 1, i.e.
history Ht−1,

Ht−1 = {a(τ), ra(τ)(τ), bi(τ), i = 1, . . . , N, τ = 1, . . . , t− 1},

where a(τ) denotes the arm played at time τ . Given bi(t), the reward for arm i
at time t is generated from an (unknown) distribution with mean bi(t)

Tµ, where
µ ∈ Rd is a fixed but unknown parameter.

E
[
ri(t)|{bi(t)}Ni=1,Ht−1

]
= E [ri(t)|bi(t)] = bi(t)

Tµ.
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An algorithm for the contextual bandit problem needs to choose, at every time t,
an arm a(t) to play, using history Ht−1 and current contexts bi(t), i = 1, . . . , N .
Let a∗(t) denote the optimal arm at time t, i.e. a∗(t) = arg maxi bi(t)

Tµ. And
let ∆i(t) be the difference between the mean rewards of the optimal arm and of
arm i at time t, i.e.,

∆i(t) = ba∗(t)(t)
Tµ− bi(t)Tµ.

Then, the regret at time t is defined as

regret(t) = ∆a(t)(t).

The objective is to minimize the total regret R(T ) =
∑T
t=1 regret(t) in time T .

The time horizon T is finite but possibly unknown.
It is assumed that ηi,t = ri(t)− bi(t)Tµ is conditionally R-sub-Gaussian for

a constant R ≥ 0, i.e.,

∀λ ∈ R,E
[
[eληi,t |{bi(t)}Ni=1,Ht−1]

]
≤ exp

(
λ2R2

2

)
.

This assumption is satisfied whenever ri(t) ∈ [bi(t)
Tµ−R, bi(t)Tµ+R]

4 TS for Contextual Bandits

Gaussian priors and Gaussian likelihood function are used to design the TS
algorithm. The likelihood of reward ri(t) at time t, given context bi(t) and

parameter µ are given by the Gaussian pdf N(bi(t)
Tµ, v2) where v = R

√
24
ε d ln 1

δ

with ε ∈ (0, 1) which is the parameter in the algorithm. Let

B(t) = Id +

t−1∑
τ=1

ba(τ)(τ)ba(τ)(τ)T

µ̂(t) = B(t)−1

(
t−1∑
τ=1

ba(τ)(τ)ra(τ)(τ)

)
If the prior for µ at time t is given by N(µ̂(t), v2B(t)−1), it can be computed

using the Bayes update rule that the posterior distribution at time t+1 is N(µ̂(t+
1), v2B(t + 1)−1). In the TS algorithm, a sample µ̃(t) from the distribution
N(µ̂(t), v2B(t)−1) is generated and the arm i that maximises bi(t)

T µ̃(t) is played.

Algorithm 2 Thompson Sampling for Contextual Bandits

Set B = Id, µ̂ = 0d, f = 0d
for t = 1, 2, . . . , do

Sample µ̃(t) from distribution N(µ̂(t), v2B(t)−1).
Play arm a(t) := arg maxi bi(t)

T µ̃(t), and observe reward ra(t)(t).
Update B = B + ba(t)(t)ba(t)(t)

T , f = f + ba(t)(t)rt, µ̂ = B−1f

end
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The Gaussian likelihood function and prior for rewards are only used to
design the Thompson Sampling algorithm for contextual bandits. The analysis
of the algorithm allows for the models to be completely unrelated to the actual
reward distribution. The assumptions on the reward distribution are only those
assumed in Section 3, i.e., the R-sub-Gaussian assumption.

Every step t of Thompson Sampling (both algorithms) consists of generating
a d-dimensional sample µ̃(t) from a multi-variate Gaussian distribution, and
solving the problem arg maxi bi(t)

T µ̃(t). Therefore, even if the number of arms
N is large (or infinite), the above algorithms are efficient as long as the problem
arg maxi bi(t)

T µ̃(t) is efficiently solvable. This is the case, for example, when
the set of arms at time t is given by a d-dimensional convex set Kt (every vector
in Kt is a context vector, and thus corresponds to an arm). The problem to be
solved at time step t is then maxb∈Kt b

T µ̃(t), where Kt.

5 Results

Theorem 1. [5] For the stochastic contextual bandit problem with linear pay-
off functions, with probability 1 − δ, the total regret in time T for Thompson

Sampling is bounded by O(d
2

ε

√
T 1+ε(lnTd ln 1

δ )), for any 0 < ε < 1, 0 < δ < 1.
Here, ε is a parameter used by Thompson Sampling.

Remark. [5] The parameter ε can be chosen to be any constant in (0, 1). If T
is known, one could choose ε = 1

lnT , to get O(d2T ) regret bound.

Remark. [5] The regret bound in Theorem 1 does not depend on N, and is
applicable to the case of infinite arms, with only notational changes required in
the analysis.

Consider the setting where each of the N arms is associated with a different
d-dimensional parameter µi ∈ Rd, so that the mean reward for arm i at time
t is bi(t)

Tµi. This setting is a direct generalization of the basic MAB problem
to d-dimensions. Thompson Sampling for this setting will maintain a separate
posterior distribution for each arm i which would be updated only at the time
instances when i is played. And, at every time step t, instead of a single sample
µ̃(t), N independent samples will have to be generated: µ̃i(t) for each arm i.

Theorem 2. [5] For the setting with N different parameters, with probability
1− δ, the total regret in time T for Thompson Sampling is bounded by

O(d
√

NT 1+ε lnN
ε (lnT ln 1

δ ))

The proofs of the above theorems are fairly involved. Hence, an outline of
the proof is given in the following section.

6 Outline of Proof

In the basic MAB problem there are N arms, with mean reward µi ∈ R for arm
i, and the regret for playing a suboptimal arm i is µa∗ −µi, where a∗ is the arm
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with the highest mean. Comparing this to a 1-dimensional contextual MAB
problem, where arm i is associated with a parameter µi ∈ R, but in addition,
at every time t, it is associated with a context bi(t) ∈ R, so that mean reward is
bi(t)µi. The best arm a∗(t) at time t is the arm with the highest mean at time
t, and the regret for playing arm i is ba∗(t)(t)µa∗(t) − bi(t)µi.

In general, the basis of regret analysis for stochastic MAB is to prove that
the variances of empirical estimates for all arms decrease fast enough, so that
the regret incurred until the variances become small enough, is small. In the
basic MAB, the variance of the empirical mean is inversely proportional to the
number of plays ki(t) of arm i at time t. Thus, every time the suboptimal arm i
is played, we know that even though a regret of µi∗−µi ≤ 1 is incurred, there is
also an improvement of exactly 1 in the number of plays of that arm, and hence,
corresponding decrease in the variance. The techniques for analyzing basic MAB
rely on this observation to precisely quantify the exploration-exploitation trade-
off. On the other hand, the variance of the empirical mean for the contextual
case is given by inverse of Bi(t) =

∑t
τ=1:a(τ)=i bi(τ)2. When a suboptimal arm

i is played, if bi(t) is small, the regret ba∗(t)(t)µa∗(t) − bi(t)µi could be much
higher than the improvement bi(t)

2 in Bi(t).
This difficulty is overcome by dividing the arms into two groups at any time:

saturated and unsaturated arms, based on whether the standard deviation of
the estimates for an arm is smaller or larger compared to the standard deviation
for the optimal arm. The optimal arm is included in the group of unsaturated
arms. At any time step t, the two groups are given by:

• saturated arms defined as those with g(T )si(t) < `(T )sa∗(t)(t),

• unsaturated arms defined as those with g(T )si(t) ≥ `(T )sa∗(t)(t),

where si(t) =
√
bi(t)TB(t)−1bi(t) and g(T ), `(T )(g(T ) > `(T )) are constants

defined as g(T ) = v
√

4d lnTd + `(T ) and `(T ) = R
√
d lnT 3 ln 1/δ + 1. si(t)

is the standard deviation of the estimate bi(t)
T µ̂(t) and vsi(t) is the standard

deviation of the random variable bi(t)
T µ̃(t).

For the saturated arms, standard deviation is small, or in other words, the es-
timates of the means constructed so far are quite accurate in the direction of the
current contexts of these arms, so that the algorithm is able to distinguish be-
tween them and the optimal arm. It can be shown that for the unsaturated arms,
the regret on playing the arm can be bounded by a factor of the standard devia-
tion, which improves every time the arm is played. Using concentration bounds
for µ̃(t) and µ̂(t) to bound the regret at any time by g(T )(sa∗(t)(t) + sa(t)(t)).
Now, if an unsaturated arm is played at time t, then using the definition of

unsaturated arms, the regret is at most 2g(T )2

`(T ) sa(t)(t). This can be used along

with the inequality from Auer at al. (2002),
∑T
t=1 sa(t)(t) = O(

√
Td lnT ), to

bound the regret due to unsaturated arms.
For saturated arms, it can be shown that the probability of playing a satu-

rated arm at any time t is within p of the probability of playing an unsaturated
arm, where p = 1

4e
√
πT ε

. Defining Ft−1 as the union of history Ht−1 and the
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contexts bi(t), i = 1, . . . , N at time t, it can be proved that with high probabil-
ity using the results of the concentration bounds earlier and the definitions of
saturated and unsaturated arms,

Pr(a(t) is a saturated arm|Ft−1) ≤ 1

p
Pr(a(t) is an unsaturated arm|Ft−1)+

1

pT 2

Defining the process (Xt; t ≥ 0) as

Xt = regret(t)− g(T )

p
1{a(t) is unsaturated}sa∗(t)(t)−

2g(T )2

`(T )
sa(t)(t)−

2g(T )

pT 2

it can be shown that Xt is a super-martingale difference process adapted
to the filtration Ft. A sequence of random variables (Yt : t ≥ 0) is called a
super-martingale with respect to filtration Ft, if for all t, Yt is Ft measurable
and for t ≥ 1;

E [Yt − Yt−1|Ft−1] ≤ 0

The Azuma-Hoeffding inequality for a super-martingale Yt corresponding to a
filtration Ft satisfying the bounded difference property |Yt − Yt−1| ≤ ct for
constants ct for t = 1, ..., T states that for any a ≥ 0

Pr(YT − Y0 ≥ a) ≤ exp(
−a2

2
∑T
i=1 c

2
t

)

It can be seen that the absolute value of each of the four terms in the definition of
the process Xt above is bounded by 2g(T )2

p`(T ) and hence the super-martingale pro-

cess defined by Yt =
∑t
w=1Xw has bounded difference property with constants

8g(T )2

p`(T ) . Thus the Azuma-Hoeffding inequality for super-martingales along with

the inequality
∑T
t=1 sa(t)(t) = O(

√
Td lnT ) can be used to obtain the desired

high probability bound.

7 Summary

To recapture, Thompson Sampling is one of the oldest heuristics that emerged in
1933. It is a Bayesian approach to solving problems with an inherent exploration-
exploitation trade-off and comes under the family of randomized probability
matching algorithms. Though it is a Bayesian approach, it works for prior-
free cases as well. Though several studies over the decades have empirically
shown the efficacy of Thompson Sampling and its robustness to delayed feed-
back, theoretical understanding of it is limited. It was only recently that the
order optimality of TS for stochastic multi-armed bandit was proved. In the
case of contextual bandits, the algorithm presented in [5] is order optimal up to
the order of

√
T . The algorithm presented is computationally efficient as long

as the problem arg maxi bi(t)
T µ̃(t) is efficiently solvable. There has been some

recent work in solving this problem in a agnostic setting.
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