Chapter 5
Concept learning (binary)
realizable \((X, C, P)\)

Given samples \((x_1, y_1), \ldots, (x_n, y_n) \ y_i \in \{0, 1\}\)

\[L_p(C', C^*) = P(C' \Delta C^*) \]

Say \(C' \) is \(\varepsilon \)-accurate (for \(P, C^* \)) if

\[P(C' \Delta C^*) \leq \varepsilon. \]

Given \((X, C, P)\)

Definition. A learning algorithm

\[A : A_n((x_1, y_1), \ldots, (x_n, y_n)) \rightarrow \hat{C} \] is

Probably Almost Correct (PAC) if for any \(\varepsilon, \delta > 0 \), there exists \(n(\varepsilon, \delta) \) so

- for any \(C, C' \) for any \(C \), if \(n \geq n(\varepsilon, \delta) \) then \(\hat{C} \) is \(\varepsilon \)-accurate
- and for any \(P, C \)
with probability at least $1 - \delta$.

Theorem 5.1 If $|\mathcal{C}| < \infty$ then there exists a PAC algorithm (i.e. the problem is PAC learnable).

Proof
Let $\mathcal{C} = \{C_1, \ldots, C_M\}$

Know $C^* \in \mathcal{C}$.

Fix \mathcal{P}, \mathcal{E}.

Fix $\delta, \epsilon > 0$.

Let

$$\beta = \{C \in \mathcal{C} : P(C \neq C^*) > \epsilon\}$$

- "bad" concepts

$$P(C = C_3) \leq (1 - \epsilon)^n$$

$\hat{C} = A(x_1, y_1, \ldots, x_n, y_n)$

So if $\mathcal{C} \subseteq (1 - \epsilon)^n < \delta$ then

$P(\hat{C} \text{ is } \epsilon\text{-accurate}) \geq 1 - \delta$.

Example - Axis parallel rectangles, Realizable case

\[X = [0,1]^2 \quad \mathcal{C} = \{ \text{axis parallel rectangles} \} \]

\(P = \text{all prob. dists on } X \)

Let

\(\hat{C} \) be the smallest rectangle giving zero errors on test data.

Claim This is a PAC algorithm.
New picture. Drew C^* = true rectangle

Done if $P(V, U, V_2, U, H_1, U, H_2) \leq \varepsilon$

with probability at least $1 - \delta$.

Newer picture
P, C' fixed.

Select a so $[a, q] \times [a, b_a]$ is smallest rectangle of this form with P probability $\geq \frac{3}{4}$

$$P([a, q] \times [a, b_a]) \geq \frac{3}{4} \equiv P([a, a] \times [a, b_a])$$

If $4 \left(1 - \frac{3}{4}\right)^n \leq 8$

then $P(U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2) \leq \varepsilon$ with prob. at least $1 - \delta$. \hfill \square$
1

X = [0, 1]

G : \xi \in [0, 1] : 0 \leq a \leq 1

\emptyset - all dist's on [0, 1]