ECE/CS 541 Computer System Analysis: Confidence Intervals

Mohammad A. Noureddine

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Fall 2018

Announcements and Reminders

- Project presentations on December 15
 - Will try to start at 5:00 pm to finish early
- Homework 4 is out and tomorrow!
- Submit papers on the 17th via EasyChair
 - Will send the link soon
 - You will get 3 anonymous reviews
 - I wonder who the reviewers are!
- ICES forms!!!
 - Please show and fill up the ICES forms
 - Get 1 point of the participation credits

Outline for the next week

• Today

- Output Analysis
- Course wrap up
- ICES forms

Slide 3

Learning Objectives

- Or what is this course about?
- At the start of the semester, you should have
 - Basic programming skills (C++, Python, etc.)
 - Basic understanding of probability theory (ECE313 or equivalent)
- At the end of the semester, you should be able to
 - Understand different system modeling approaches
 - Combinatorial methods, state-space methods, etc.
 - Understand different model analysis methods
 - Analytic/numeric methods, simulation
 - Understand the basics of discrete event simulation
 - Design simulation experiments and analyze their results
 - Gain hands-on experience with different modeling and analysis tools

Today's Lecture

• Confidence Intervals

• Course Wrap-up

Recall: Types of Simulation

• We distinguished between two types of simulation approaches: terminating and non-terminating

This class

(Terminating simulation

- Run for a specific duration T_E or until a specific event E happens
- Start at time 0 under well-specified initial conditions
- Example: Bank opens at 8:30 a.m., closes at 4:30 p.m.
 - We are only interested in these 480 minutes

Non-terminating simulation

- Run for a very long period of time
- Goal is to study the long run (steady-state) properties of the system
 - Properties that are not influenced by the initial conditions
- Example: network packet switching, queueing systems, hospital emergency rooms

Output Data

- The outputs of a model consist of one or more random variables
 - Why?
 - We can look at a model as an input-output transformation of a given set of random variables (e.g. exponentially distributed inter-arrival times)

- Example: Consider an M/G/1 queueing example
 - Poisson arrival rate
 - Normal service time
- Suppose we are interested in the long-run mean queue length, i.e. L_Q
 - We run the simulation for 5000 time units, and we divide it into 5 equal subintervals of 1000 time units
 - Average the number of customers in the queue in each sub-interval

Current Setup

• We run *k* independent simulations and obtain *k* i.i.d. random variables

$$Y_1, Y_2, \ldots, Y_k$$

• where,

$$E[Y_i] = \theta$$
 and, $Var(Y_i) = \sigma^2$

Quantity we want to estimate

- Our purpose is to devise an estimator $\hat{\theta}$ of θ
 - Evaluate how good of an estimator that is
 - Obtain insight into when to stop running simulations, i.e., how large must k
 be

The Sample Mean

• **Definition**:

- The sample mean is the arithmetic average of Y_1, Y_2, \ldots, Y_k defined as

$$\hat{Y} = \frac{1}{k} \sum_{i=1}^{k} Y_i$$

Definition:

- An estimator $\hat{\theta}$ of a quantity θ is said to be **unbiased** if

$$E[\hat{\theta}] = \theta$$

• <u>Claim</u>:

- The sample mean $\hat{\theta} = \hat{Y}$ is an **unbiased estimator** of $\theta = E[Y_i]$
- Proof: What is $E[\hat{\theta}]$?

How Good is the Sample Mean?

A common measure of the goodness of an estimator is to look at its mean-squared error (MSE), i.e.

$$E\left[\left(\hat{\theta}-\theta\right)^2\right]$$

• So let's look at what the MSE for the sample mean is

$$E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = E\left[\hat{\theta}^{2} + \theta^{2} - 2\hat{\theta}\theta\right]$$

$$= E\left[\hat{\theta}^{2}\right] + \theta^{2} - 2\theta E\left[\hat{\theta}\right]$$

$$= E\left[\hat{\theta}^{2}\right] - \theta^{2} = E\left[\hat{\theta}^{2}\right] - E\left[\hat{\theta}\right]^{2} = Var\left(\hat{\theta}\right)$$

$$= \frac{1}{k^{2}} \sum_{i=1}^{k} Var(Y_{i}) = \frac{\sigma^{2}}{k} = \text{MSE}(\hat{\theta})$$

MSE of the Sample Mean

• We have shown that

$$MSE(\hat{\theta}) = \frac{\sigma^2}{k}$$

- The error of our sample mean actually depends on the variance of our random variables
 - This means that when $\frac{\sigma}{\sqrt{k}}$, $\hat{\theta}$ is a good estimator of θ
- We know that a random variable is unlikely to be too many standard deviations from its mean
 - Why? Because of two main theorems:
 - Chebychev's inequality
 - The Central Limit Theorem
 - Proof in class

MSE and Variance

We will show in class that, using some magic

$$P\left(|\hat{\theta} - \theta| > \frac{1.96\sigma}{\sqrt{k}}\right) \approx 0.05$$

- So what does this mean to us?
 - For large k, we have a **probabilistic approximate bound** on how far is $\hat{\theta}$ from θ
- That's good. But what seems to be missing?
 - We don't know what σ is, so how do we obtain it?
 - We can also estimate it from the data we have!

Sample Variance

• **Definition**:

- The sample variance of Y_1, Y_2, \ldots, Y_k is defined as

$$S^2 \equiv \sum_{i=1}^n \frac{\left(Y_i - \hat{Y}\right)^2}{k - 1}$$

- Claim:
 - The sample variance is an unbiased estimator of σ^2
 - Proof: We will show in class that

$$E[S^2] = \sigma^2$$

• We will call *S* the sample standard deviation

Now What?

• So far, we have established that, using our sample mean $\hat{\theta}$ and our sample standard deviation *S* that we have

$$P\left(|\hat{\theta} - \theta| > \frac{1.96S}{\sqrt{k}}\right) \approx 0.05$$

• How does this help us figure out what *k* is?

- Let
$$d = \frac{S}{\sqrt{k}}$$

- Then choose an acceptable value for d
 - Keep increasing *k* until we hit that value
- Problems?

Variance Based Stopping Condition

- A problem might arise from the fact that we are also estimating σ
 - So we need k to be good enough for S a good estimate of σ
- Algorithm now looks like:
- Choose d and a lower bound $k_0 = 30$

Run k_0 simulation runs

$$k \leftarrow k_0$$

while
$$\frac{s}{\sqrt{k}} > d$$
 do

Run simulation and generate output y_k

$$k \leftarrow k + 1$$

Compute new estimate s

end while

$$\bar{x} \leftarrow \sum_{i=1}^{k} \frac{y_i}{k}$$

Confidence Intervals

- From our previous discussion,
 - we know that $\hat{\theta}$ is close to θ
 - we have computed an approximate probabilistic upper bound on how far is $\hat{\theta}$ from θ
- However, it would be meaningful if
 - we could also assert, with a certain confidence, whether the real θ falls within a given interval
- Enter confidence intervals!
 - Notice that we used confidence intervals and not probability intervals
 - We will see later on why we used that term specifically!

Recall our Setup

• We run k simulation runs, and obtain k i.i.d random variables

$$Y_1, Y_2, \ldots, Y_k$$

• We know that

$$E[Y_i] = \theta$$
, and, $Var(Y_i) = \sigma^2$

• Goal: Assert, with a certain confidence, that θ falls within a certain interval,

$$(\hat{\theta} - \gamma, \hat{\theta} + \gamma)$$

Confidence Intervals

• We know from the Central Limit Theorem, that for large *k*,

$$\sqrt{k} \left(\frac{\hat{\theta} - \theta}{\sigma} \right) \stackrel{{}_{\smile}}{\sim} N(0, 1)$$

approximately

Also, from a results know as Slutsky's theorem, we can write

$$\sqrt{k} \left(\frac{\hat{\theta} - \theta}{S} \right) \sim N(0, 1)$$

Sample standard deviation

Derivations

• Let $Z \sim N(0,1)$ and z_{α} be such that

$$P\left(Z > z_{\alpha}\right) = \alpha$$

For example,

$$z_{0.025} = 1.96$$

• By symmetry of the normal distribution (specifically, the standard normal in our case)

$$z_{1-\alpha} = z_{\alpha}$$

• i.e.,

$$P(Z > z_{1-\alpha}) = 1 - \alpha, \quad P(Z > z_{\alpha}) = \alpha$$

• It follows that

$$P\left(-z_{\frac{\alpha}{2}} < Z < z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

Derivations Continued

• Therefore, for large *k*, we can write that

$$P\left(-z_{\frac{\alpha}{2}} < \sqrt{k} \ \frac{\hat{\theta} - \theta}{S} < z_{\frac{\alpha}{2}}\right) \approx 1 - \alpha$$

Rearranging the above equation,

$$P\left(\hat{\theta} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}} < \theta < \hat{\theta} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}}\right) \approx 1 - \alpha$$

- What does this mean?
 - With approximate probability 1α , the population mean (i.e., θ) will lie within the region

$$\hat{\theta} \pm z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}}$$

• But wait, we're still saying probability, where does confidence come into play?

Interpretation

Recall our previous finding,

$$P\left(\hat{\theta} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}} < \theta < \hat{\theta} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}}\right) \approx 1 - \alpha$$

- Let \bar{x} and s be **observed** values of the sample mean $\hat{\theta}$ and sample standard deviation S
 - Then we call the interval $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}}$
 - an (approximate) $100(1 \alpha)\%$ confidence interval estimate of θ
 - Note that for $\alpha = 0.05$
 - We get that $z_{\frac{\alpha}{2}} = 1.96$
 - seems familiar?

Confusion Alert!

https://xkcd.com/1146/

Correct Interpretation

• What we have derived is that for the sample mean $\hat{\theta}$ and the sample variance S^2 of our k output random variables $\{Y_1, Y_2, ..., Y_k\}$

$$P\left(\hat{\theta} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}} < \theta < \hat{\theta} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}}\right) \approx 1 - \alpha$$

- Or, the true mean θ will fall in the interval θ̂ ± z_{α/2} S/√k with approximate
 probability 1 − α
- Recall that $\hat{\theta}$ is also a random variable!
- However, after observing \bar{x} and s, then the true mean θ
 - either falls in $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}}$ or it does not!
 - so talking about the probability here is irrelevant!
 - however, we are $100(1-\alpha)\%$ confident that $\hat{\theta}$ will fall into that interval

Correct Interpretation cont.

- However, after observing \bar{x} and s, then the true mean θ
 - either falls in $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{s}{\sqrt{k}}$ or it does not!
 - so talking about the probability here is irrelevant!
 - however, we are $100(1-\alpha)\%$ confident that $\hat{\theta}$ will fall into that interval
- Or, alternatively, in prose
 - "I am k runs of the simulation and create a 95% confidence interval for θ . This particular interval (i.e., $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{S}{\sqrt{k}}$) may or may not contain θ . However, if I were to create many confidence intervals like this one many time over, then approximately 95% of them will contain the true mean θ "

Leemis, Lawrence M., and Stephen Keith Park. Discrete-event simulation: A first course. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.

Stopping Condition

- Now we have two parameters we can control
 - The confidence level $100(1-\alpha)$
 - The length of the confidence interval l
- Choose α and l and a lower bound $k_0 = 30$

Choose α and interval length l

Run k_0 simulation runs

$$k \leftarrow k_0$$

while $2z_{\frac{\alpha}{2}}\frac{s}{\sqrt{k}} \geq l$ do

Run simulation and generate output y_k

$$k \leftarrow k+1$$

Compute new estimate s

end while

$$\bar{x} \leftarrow \sum_{i=1}^{k} \frac{y_i}{k}$$

What did we do in this course?

- At the start of the semester, you should have
 - Basic programming skills (C++, Python, etc.)
 - Basic understanding of probability theory (ECE313 or equivalent)
- At the end of the semester, you should be able to
 - Understand different system modeling approaches
 - Combinatorial methods, state-space methods, etc.
 - Understand different model analysis methods
 - Analytic/numeric methods, simulation
 - Understand the basics of discrete event simulation
 - Design simulation experiments and analyze their results
 - Gain hands-on experience with different modeling and analysis tools

Slide 26