ECE/CS 541

Computer System Analysis:
Stochastic Activity Networks

Mohammad A. Noureddine
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Fall 2018

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 1

Announcements and Reminders

» Project presentations on December 15
— Will try to start at 5:00 pm to finish early

» Homework 4 i1s out and due next week

« Submit papers on the 17™ via EasyChair
— Will send the link soon
— You will get 3 anonymous reviews

* [wonder who the reviewers are!

 ICES forms!!!
— Please show and fill up the ICES forms
— Get 1 point of the participation credits

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 2

Outline for the next 2 Weeks

 Today
— Stochastic Activity Networks Intro

— SAN Examples

— Intro to output analysis

 Tuesday
— Qutput analysis
e Thursday

— TBA (More output analysis or Introduction to Game Theory)

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 3

Learning Objectives

 Or what 1s this course about?

» At the start of the semester, you should have
— Basic programming skills (C++, Python, etc.)
— Basic understanding of probability theory (ECE313 or equivalent)

« At the end of the semester, you should be able to Project
— Understand different system modeling approaches
« Combinatorial methods, state-space methods, etc.
— Understand different model analysis methods
* Analytic/numeric methods, simulation
— Understand the basics of discrete event simulation
— Design simulation experiments and analyze their results

— Gain hands-on experience with different modeling and analysis tools

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 4

Today's Lecture

Stochastic Activity Networks

— Definitions and semantics

— Dependent behavior, well-specified, general distributions

Rep/Join semantics

Example

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 5

Stochastic Petri Net Review

One of the simplest high-level modeling formalisms is called stochastic Petri nets.

A stochastic Petri net is composed of the following components:

Places: O which contain tokens, and are like variables

tokens: @ which are the “value” or “state” of a place

transitions: D ‘ (timed, untimed) change the #tokens in places

Input arcs: Q—ﬂ which connect places to transitions
output arcs: U—»Q which connect transitions to places

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 6

SPN Example: Readers/Writers Problem

e There are at most N requests in the system at a time.
* Read requests arrive at rate A,,, and write requests at rate A,

* Any number of readers may read from a file at a time, but only one writer may
write at a time.

* A reader and writer may not access the file at the same time.
» Locks are obtained with rate A; (for both read and write locks);
« Reads and writes are performed at rates A, and A, respectively.

* Locks are released at rate A,

USES ONE MUTEX IN THE CODE

Note: iy

o= | -

-

N

O+

'} -4

(N arcs) . ;5 ~ ~
__DEADLOCK

memegenera

t

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 7

SPN Representation of Reader/Writers Problem

}"m }\‘L 7\‘rel

o000

N
M
—O—1~O—{—0—

puter System Analysis. Fall 2018 Slide 8

Notes on SPNs

* SPNs are much easier to read, write, modify, and debug than Markov chains.

« SPN to Markov chain conversion can be automated to afford numerical
solutions to Markov chains.

* Most SPN formalisms include a special type of arc called an inhibitor arc,
— inhibit a transition if the connected place has “too many” tokens
« Some also include the identity (do nothing) function.

e Limited in their expressive power: may only perform +, -, >, and test-for-zero
operations.

* These very limited operations make it very difficult to model complex
interactions.

« Simplicity allows for certain analysis, e.g., a network protocol modeled by an
SPN may detect deadlock (if inhibitor arcs are not used).

* More general and flexible formalisms are needed to represent real systems.

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 9

Stochastic Activity Networks

* We need more expressive modeling languages, with richer semantics
* Many extensions have been proposed

* You guessed it: We will examine Stochastic Activity Networks

e Properties of SANSs:
* General way to specify than an activity (or a transition) is enabled

* General way to specify a completion (or firing) rule
» A way to represent zero-timed events
» Represent probabilistic choices upon activity completion

» State dependent parameter values
* General delay distributions on activities

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 10

SANSs have four new symbols in addition to those of SPNss:

— Input gate: <] used to define complex enabling predicates and completion

functions

— Output gate: [> used to define complex completion functions

SAN Symbols

— Cases: @ (small circles on activities) used to specify probabilistic choices

— Instantaneous activities: ' used to specify zero-timed events

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 11

.

2.

Enabling Rules

An input gate has two components (let S be the set of possible states):

Enabling function or predicate:

f:8S—=AT, 1}

Input function: transition from state s to state s’

g:8—S8

An activity 1s enabled if
— For every connected input gate, the enabling predicate is true

— For each input arc, the number of tokens in the connected place > the
number of arcs

Notation: M ARK(P) = number of tokens in place P

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 12

Example SAN Enabling Rule

Example:

1G1
Pl

o) al

P3

IG1 Predicate:
1f ((MARK(P1)>0 && MARK (P2)==0) ||
(MARK (P1)==0 && MARK (P2)>0))
return 1;

else return 0O;

Activity al 1s enabled if /G 1’s predicate 1s true and MARK(P3) > 0.

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 13

Cases represent a probabilistic choice of an action to take when an activity

completes.

When activity a completes, a token is removed from place P1, and with probability
o, a token 1s put into place P2, and with probability 1 - o, a token is put into place

P3.

Note: cases are numbered, starting with 1, from top to bottom.

Pl

Probabilistic Choices

P3

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 14

Output Gates

When an activity completes, an output gate allows for a more general change in the

state of the system. This output gate function is usually expressed using pseudo-C
code.

Example OG Function
MARK(P) = 0;

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 15

Instantaneous Activities

Another important feature of SANs is the instantaneous activity.

* An instantaneous activity 1s like a normal activity except that it completes in
zero time after it becomes enabled.

« Instantaneous activities can be used with input gates, output gates, and cases.

Instantaneous activities are useful when modeling events that have an effect on the
state of the system, but happen in negligible time, with respect to other activities in
the system, and the performance/dependability measures of interest.

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 16

Activation:

SAN Terms

— time at which an activity begins

Completion:

— time at which activity completes

Abort:

— time, after activation but before completion, when activity is no longer

enabled

Active:

— the time after an activity has been activated but before it completes or

aborts.

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 17

activation completion

€ activity time —]

Illustration of SAN Terms

activation aborted

———— activity ime —————»|

7,

¢ enabled —

v

«— cnabled —»

completion
activation and activation completion
 activity activity
time time

\ 4 \ 4 A 4 >

/77777
7

< enabled —— ™|

v

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 18

Completion Rules

When an activity completes, the following events take place (in the order listed),
possibly changing the marking of the network:

1. If the activity has cases, a case 1s (probabilistically) chosen.

2. The functions of all the connected input gates are executed (in an
unspecified order).

3. Tokens are removed from places connected by input arcs.

4. The functions of all the output gates connected to the chosen case are
executed (in an unspecified order).

5. Tokens are added to places connected by output arcs connected to the
chosen case.

Ordering 1s important, since effect of actions can be marking-dependent.

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 19

Marking Dependent Behavior

Virtually every parameter may be any function of the state of the model. Examples
of these are

* rates of exponential activities
» parameters of other activity distributions

* case probabilities

An example of this usefulness is a model of three redundant computers where the
coverage (probability that a single computer crashing does not crash the whole
system) decreases after a failure.

a
case 1 0.1 +0.02 * MARK(P)
case 2 0.9 - 0.02 * MARK(P)

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 20

Running Example

« A fault-tolerant computer system is made up of two redundant computers.
* Each computer is composed of three redundant CPU boards.
« A computer is operational 1f
— at least 1 CPU board is operational,
e The system 1s operational if
— at least 1 computer is operational.

* CPU boards fail at a rate of 1/10° hours,
— there 1s a 0.5% chance that a board failure will cause a computer failure,

— there 1s a 0.8% chance that a board will fail in a way that causes a
catastrophic system failure.

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 21

Representative SAN

Enabledl S
CPUfaill

O

O

Enabled2 Q
CPUfail2

Coveredl

Uncoveredl

>

Catastrophicl

>

Covered2

W

o
CPUboards1

NumComp

Uncovered?2
[
o0
Catastrophic2 CPUboards2

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 22

Activity Case Probabilities and Input Gate Definition

Activity Case Probability
CPUfaill 1 0.987
2 0.005
3 0.008
Gate Definition

Enabled] |Predicate

MARK(CPUboardsl > 0) && MARK(NumComp) > 0
Function

MARK(CPUboardsl)- —;

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 23

Output Gate Definitions

Gate Definition
Coveredl Function
if (MARK(CPUboardsl) == 0)
MARK(NumComp)--,

Uncoveredl Function
MARK(CPUboards1) = 0,
MARK(NumComp)--,
Catastrophicl |Function
MARK(CPUboards1) = 0,
MARK(NumComp) = 0,

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 24

General Distributions

* SANSs support many activity time distributions
— Exponential, hyperexponential, deterministic, Weibull, etc.
« In addition, distribution parameters can be dependent on the state of the model

— 1.e., dependent on the marks in the places

* Downside
— No equivalent CTMC can be generated for general distributions
 However, we can still perform simulations to obtain meaningful results

* Analytic solutions can still be possible under certain conditions

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 25

Reward Variables

* Okay we specified our system model and all of its parameters

e What comes next?

* Need to specify meaningful metrics to compute
— E.g., performance, dependability, availability etc.
* Enter reward variables

« Examples:
— Expected time until service,
— Availability,
— Number of misrouted packets in an interval of time,
— Processor utilization,
— Operational cost,

— Length of downtime,

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 26

Reward Structures

* There are two ways for us to accumulate rewards:

— A model may be in a certain state or states for some period of time
 This 1s called a rate reward
« Example?

— An activity may complete
* This is called an impulse reward

» Examples?

» At the end of time,
— Reward variable = rate rewards + impulse rewards

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 27

Example

We want to predict the profits of a certain cloud web hosting solution (think
hosting your web service on Amazon EC2)

» Basically, when the service is up, your profits accumulate at a rate of $N/hr.
* When system is running in degraded mode, the rate of profits drops to $(IN/6)/hr

 Finally, a repair operation has a fixed cost of $K to your business

(N s is the fully functioning state

N
R(s) = < 3 s is the degraded operation state

L. 0 otherwise

, . . 3 .
—K s is when a repair is activated

0 otherwise

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 28

Types of Reward Variables

* By integrating the previous functions over an interval of time ¢, we can get our
reward variable, 1.e., the profit our business will make

* So basically, a reward variable is the sum of impulse and rate reward structures
over a certain time interval

* Let [t,t + [] be an interval of time over which the reward variable is defined
— If [= 0, then we get an instant of time reward variable

— If 1 > 0, then we get an interval of time reward variable

— If [> 0, then dividing an interval of time variable by [gives us a time
averaged interval of time reward variable

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 29

Instant-of-Time

'

t lim as ¢
goes to
infinity

Reward Structure

/

Time-Average Interval-of-Time

[t,t+]

v

v
[, ¢+ 1]
lim as ¢

goes to
infinity

Reward Variable Specification

\

(£, t+]
lim as /
goes to
infinity

Interval-of-Time

[t, ¢+ 1] (£, ¢+ 1]

[t,t+ 1] lim as /
goes to
infinity

lim as ¢
goes to
infinity

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 30

Recall our Running Example

* We are interested in computing
— Reliability
— Number of board failures

— Performability (performance + reliability)

CC

Enabled
CPUfaill

EnabledP

CPUfail2

Catastrophic2

&

CPUboards1

CPUboards2

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 31

Reward Variables for Running Example

Reliability
Rate rewards
Subnet = computer
Predicate:
MARK (NumComp) > 0
Function:
1
Impulse reward
none

NumBoardFailures

Rate reward
none

Impulse reward
Subnet = computer
activity = CPUfaill, value = 1
activity = CPUfail2, value = 1

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 32

Reward Variables for Running Example

Performability

Rate rewards
Subnet = computer
Predicate:
1
Function:
MARK (NumComp)
Impulse reward
none

NumBoards

Rate reward
Subnet = computer
Predicate:
)i
Function:
MARK(CPUBboardsl) + MARK(CPUboards2)
Impulse reward
none

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 33

Generated State Space

State No. | CPUboardsl | CPUboards2 | NumComp | (Next State, Rate)

1 3 3 2 (2,.p1M),(3,p20N),(4,P3N),(5,p1N),(6,p2M,),(7,p3MN)

2 2 3 2 (8,p1AN),(3,p2MN),(4,p3M),(9,p1AN),(10,p20),(11,p3A)
3 0 3 1 (12,p1A),(13,(p2+p3) A)

4 0 3 0

5 3 2 2 (9,p1IN),(12,p20),(14,p30N),(15,p11),(6,p21),(7,p31)
6 3 0 1 (10,pIA),(13,(p2+p3) A)

7 3 0 0

8 1 3 2 (3,(p1+p2) A),(4,p3M),(16,p10),(17,p2N),(18,p3N)
9 2 2 2 (16,pIA),(12,p2N),(14,p30),(19,p11),(10,p21),(11,p3A)
10 2 0 1 (17,p1N),(13,(p2+p3) A)

11 2 0 0

12 0 2 1 (20,pIA),(13,(p2+p3) A)

13 0 0 0

14 0 2 0

15 3 1 2 (19,p1A),(20,p2M0),(21,p3N0),(6,(p1+p2) A),(7,p3N)
16 1 2 2 (12,(p1+p2) A),(14,p30),(22,p10),(17,p20),(18,p3N)
17 1 0 1 (13,)

18 1 0 0

19 2 1 2 (22,p1AN),(20,p2M0),(21,p30),(10,(p1+p2A),(11,p3N)
20 0 1 1 (13,)

21 0 1 0

22 1 1 2 (20,(p1+p2) 1),(21,p3M),(17,(p1+p2) M),(18,p31)

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 34

Underlying Markov Model

Y
« 1 " SN " 6
)

Model Composition

» Let’s take another look at our SAN model

What can you notice in this model?

Enabled1

Mirrored copy of the same

model

Enabled2

Coveredl / CPUboards1
Uncovered1 l

O
O
O
CPUfaill >
Catastrophicl Y=
—={0 @

CPUfail2

I L7 NumComp
Covered2
Uncovered2 \

o

S
/ ® 0

Catastrophic2 CPUboards2

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 36

Rationale

There are many good reasons for using composed models.

— Building highly reliable systems usually involves redundancy. The
replicate operation models redundancy in a natural way.

— Systems are usually built in a modular way. Replicates and Joins are
usually good for connecting together similar and different modules.

— Tools can take advantage of something called the Strong Lumping Theorem
that allows a tool to generate a Markov process with a smaller state space.

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 37

Composed Model for Computer Failure Model

Repl

Node | Reps |(Common Places)
Repl 2 \ NumComp

Computer

Shared place between the replicated models

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 38

Markov Chain of Reduced Base Model

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 39

Fault-Tolerant Control Computer Example

* System consists of 2 computers
« Each computer consists of
— 3 memory modules (2 must be operational)
— 3 CPU units (2 must be operational)
— 2 1/0O ports (1 must be operational)
— 2 error-handling chips (non-redundant)
« Each memory module consists of
— 41 RAM chips (39 must be operational)
— 2 interface chips (non-redundant)
A CPU consists of 6 non-redundant chips
* An /O port consists of 6 non-redundant chips
* 10 to 20 year operational life

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 40

Diagram of Fault-Tolerant Multiprocessor System

| oog.. O ooo..Oo | .| ooO.d |
i 41 RAMs 41 RAMs 41 RAMs i
: . . : O d !
i 2 int. ch. 2 int. ch. 2 int. ch. 7 ch. i
i memory module memory module memory module errorhandlers i
| interface bus !
' |oo..o 00.. O 00.. O 00.. O oo.o |
! 6 CPU 6 CPU 6 CPU 6 1/0 6 1/0 !
E chips chips chips chips chips E
i CPU module CPU module CPU module I/O port I/O port i

p—— '__(computer

5 B!

51 15

L E T E!

1 O 1 O

LS 1 O

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 41

Definition of “Proper Operation”

e The system 1s operational if

— at least one computer is operational
« A computer is operational 1f

— all the modules are operational
* A memory module 1s operational if

— at least 39 RAM chips and both interface chips are operational.
e A CPU unit is operational if

— all 6 CPU chips are operational
* AnI/O port 1s operational if

— all 6 I/O chips are operational
* The error-handling unit is operational 1f

— both error-handling chips are operational

Failure rate per chip is 100 failures per 1 billion hours

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 42

coverage into account.

fault 1s contained.

Coverage

The coverage probabilities are given in the following table:

Redundant Component Fault Coverage Probability
RAM Chip 0.998

Memory Module 0.95

CPU Unit 0.995

I/O Port 0.99

Computer 0.95

* For example, if a RAM chip fails, there is a 0.2% chance the memory module
will fail even if sufficient redundancy exists.

« If the memory module fails, there 1s a 5% chance the computer will fail.

« If a computer fails, there 1s a 5% chance the system will fail.

« This system could be modeled using combinatorial methods if we did not take

« Coverage 1s the chance that the failure of a chip will not cause the larger system
to fail if sufficient redundancy exists. 1.e., coverage is the probability that the

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 43

Outline of Solution: List of SANs

* The model is composed of four SANS:
1. memory module
2. cpu _module
3. errorhandlers
4. 10 port module

 Each SAN models the behavior of the module in the event of a module
component failure.

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 44

Tricks of the Trade

We would like to have the fewest number of states possible.

« We don’ t care which component failed or what particular failed state the
model is in. Therefore, we lump all failure states into the same state.

« We don’ t care which computer or which module is in what state. Therefore,
we make use of replication to further reduce the number of states.

* We use marking-dependent rates to model RAM chip failure, making use of
the fact that the minimum of independent exponentials is an exponential.

* We use cases to denote coverage probabilities, and adjust the probabilities
depending on the state of the system.

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 45

Composed Model

Replicate to capture redundancy

Rep

—» Join to share state

Join

Rep cpu_modules

io_port_modules

errorhandlers

memory module

Node | Reps Common Places

Repl |3 computer failed
memory failed

Rep2 |2 computer failed

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 46

cpu_modules SAN

memory_failed Gl

computer failed

cpu_failure

errorhandlers
Place Marking
cpus 3
10ports 2
errorhandlers 2
memory_failed 0
computer failed 0

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 47

cpu_modules SAN, cont.

cpu_modules input gate predicates and functions:

Gate Enabling Predicate Function
1G1 (MARK (cpus) > 1) && identity
(MARK (memory failed) < 2) &&
(MARK (computer failed) < 2)

Only time we’ re interested in processor failure is when it hasn’ t already failed

cpu_modules activity time distributions:

Activity Distribution
cpu_failure | expon(0.0052596 * MARK(cpus))

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 48

cpu_modules SAN,

cpu_modules case probabilities for activities:

Case Probability
module cpu failure
1 if (MARK (cpus) == 3)
return(0.995);
else
return(0.0),
2 if (MARK (cpus) == 3)
return(0.00475),
else
return(0.95),;
3 if (MARK (cpus) == 3)
return (0.00025);
else
return(0.05),;

cont.

« case 1: chip failure
covered

 case 2: chip failure
causes computer failure

 case 3: chip failure
causes system
(catastrophic) failure

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 49

cpu_modules SAN, cont.

cpu_modules output gate functions:

Gate | Function

OGl |if (MARK(cpus) == 3)
MARK (cpus) — —;

0OG2 | MARK(cpus) = 0;

MARK (ioports) = 0;

MARK (errorhandlers) = 0,
MARK (memory _failed) = 2;
MARK (computer failed) ++;
0OG3 | MARK(cpus) = 0;

MARK (ioports) = 0,

MARK (errorhandlers) = 0,
MARK (memory_failed) = 2;
MARK (computer failed) = 2;

Different failures have different impacts on processor/system state

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 50

errorhandlers SAN

Place Marking
errorhandlers 2
cpus 3
10ports 2
memory_failed 0
computer failed 0

errorhandlers

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 51

memory_chip_failure

6
interface _chip_failure ‘ interface_chips

held in common.

IG1

1G2

memory_module SAN

Place Marking
memory_chips 41
interface chips 2
memory failed 0
computer failed 0

Note: memory module is replicated 3 times, computer failed and memory failed

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 52

io_port failure

io_port_modules SAN

errorhandlers

Place

1oports 2
cpus 3
errorhandlers 2
memory failed 0
computer failed 0

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 53

The modeled two-computer system with non-perfect coverage at all levels (i.e., the
model as described), the state space contains 10,114 states. The 10 year mission

reliability was computed to be .995579.

Model Solution

£ 1.00
=
©
@
[a ey
0.99 ‘
|
|
{
|
|
|
|
|
0.98 '
0.0 20 4.0 6.0 8.0 100 120 140 160 180 20.0
Years

Coverage Considered at Each Level

ECE/CS 541: Computer System Analysis. Fall 2018

Slide 54

Impact of Coverage

« Coverage can have a large impact on reliability and state-space size. Various
coverage schemes were evaluated with the following results.

Reliability
Design description State-space size (10-year
mission time)
100% coverage at all levels 4278 0.999539
Nonperfect coverage considered at all levels 10114 0.995579
Nonperfect coverage considered at all levels, 1335 0.987646
no spare memory module
Nonperfect coverage considered at all levels, 3299 0.973325
no spare CPU module
Nonperfect coverage considered at all levels, 3299 0.985419
no spare 10 port
Nonperfect coverage considered at all levels, 511 0.935152
no spare memory module, CPU module, or
10 port
100% coverage at all levels, no spare 6 0.702240
memory module, CPU module, 10 port, or
RAM chips

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 55

Coming up Next: Output Analysis

 We have seen ways to generate random numbers

— And evaluate their characteristics

 We have seen ways to generate random variates

— Starting from the uniform distribution
We have seen how to define our models in high-level language

* Okay, we run the simulation and we get numbers
— But wait how do we interpret those numbers?
— When do we stop our simulations?

— How confident our we in our numbers?

We will set out to answer those questions in the following lectures

ECE/CS 541: Computer System Analysis. Fall 2018 Slide 56

