Random Number Generation

PSEUDO-RANDOM NUMBER GENERATTON Some function when querical gives a number in (0,1) Desired Properties I. UNIFORM - many many many samples should look like coming from V(0,1) e.g. the "empirical CDF" F(n) = # samples 5h FIL) INDEPENDCE -? How would you test? - more to come

PSEUDO-RANDOM NUMBER GENERATION (RNG)

IMPORTANT CONSIDERATIONS

- FAST
- · PORTABLE BETWEEN COMPUTERS
- · REPLICABLE
- · CLOSELY APPROXIMATE IDEAL STATISTICAL PROPERTIES OF UNIFORMITY AND INDEPENDENCE
- · "LONG CYCLE"

RNGs based on functions produce a sequence of numbers Xo X1 X2 ... Xj ... Xk ... Xm-k period of cycle

· cryptographically secure - Given long sequence of past samples, jury hand to guess next sample

Common RNGs Linear Congruential Method (LCM) produces sequence Xo, X, X2, by $X_{i+1} = (aX_i + c) \mod m \quad i=0,1,2,...$ multiplicr increment modulus Values chosen for a, c, m, and X. have ENORMOUS impact on statistical properties and cycle length Random numbers are in [O, m-1], converted by $R_i = \frac{X_i}{m}$

Tansworthe Generator - an option in Möebins operates on sequence of binary digits bob, ... bk ... humbers formed by grouping bits, e.g. every 64 to get 64 bit unsigned integers $b_n = c_{q-1} \cdot b_{n-1} \oplus c_{q-2} \cdot b_{n-2} \oplus \cdots \oplus c_0 \cdot b_{n-q}$ Ci are binary coefficients is logical AND Need good choices for Ci

COMBINED LINEAR CONGRUENTIAL GENERATOR
- technique to create longer period generator
- Use k different LCM
jth generator has mj prime, aj multiplier
- X_{i,j} is ith output from generator j
X_{i,j} ~ U[0, mj-1]

$$Y_i = \left(\sum_{j=1}^{k} (-1) X_{i,j}\right) \left(\mod m_i - 1 \right) \qquad R_i = \begin{cases} X_i/m_i, X_i > 0 \\ (m_i - 1)/m_i, X_i = 0 \end{cases}$$

Maximum period
 $P = \frac{(m_i - 1)(m_i - 1) \cdots (m_k - 1)}{2^{k'_i}}$

CRYPTOGRAPHICALLY SECURE RNG

CRNG should pass the "next bit" test

Given the 1st k bits of a random sequence, no polynomial time algorithm Can predit the next bit with probability of success > 5070

CRNG should pass "state compromise extensions"

- state of LCM is last number generated - state of Mersienne Twister is 624 64-bit integers

IN EVENT THAT SOME OR ALL OF STATE IS COMPONISED, SHOULD BE IMPOSSIBLE TO RECONSTRUCT STREAM OF RANDOM NUMBERS PRIOR TO REVOLATION

Random Number Streams seed : starting point in sequence X. X. X. X. ... X. X. X. X. X. start here and $R_1 = \frac{X_j}{M}$, $R_2 = \frac{X_{j+1}}{M}$ etc. YOU CAN run multiple streams from the same mathematical sequence, separted by b $X_{b} \times_{1} \cdots \times_{b-1} \times_{b} \times_{b+1} \cdots \times_{2b-1} \times_{2b} \times_{2b+1} \cdots = 0$ $\frac{X_{b}}{m}, \frac{X_{b+1}}{m} = \frac{X_{2b}}{m}, \frac{X_{2L+1}}{m} =$ $\frac{\chi_{\bullet}}{m}, \frac{\chi_{I}}{m},$? For really large period 6, how do you FIND these starting

TESTS FOR RANDOM NUMBERS

Reminder of how statistical testing works S = {S₁, S₂, ..., S_n} a set of DATA SAMPLES, from some (unknown) probability distribution We wish to look for statistical support for some hypothesis about the data Ho : usually called null hypothesis HA: usually called alternative hypothesis Construct some statistic with Known distribution using S
 Ask "What's the probability of seeing this statistic if Ho is true."

"CONFIDENCE LEVEL" specifies decision

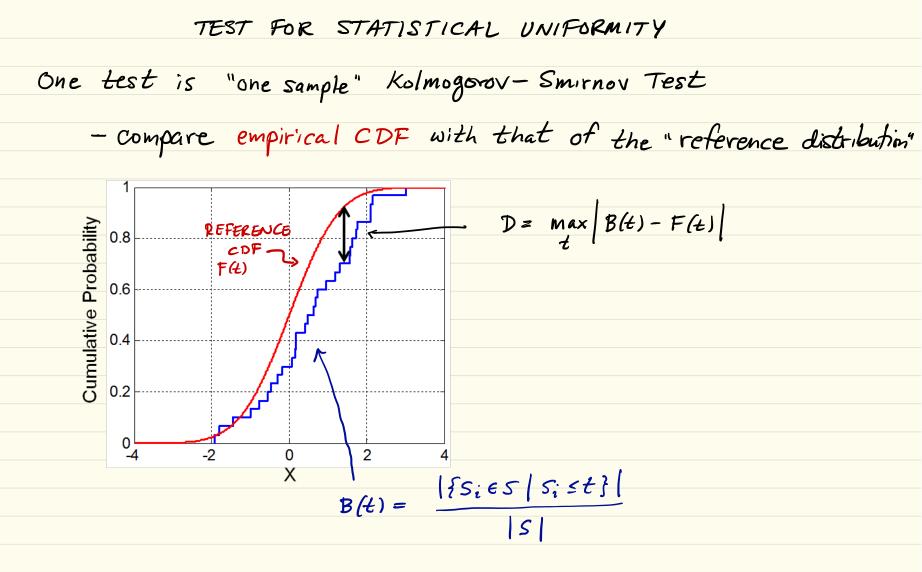
IF probability of observing statistic < X WE REJECT THE NULL AYPOTHESIS X typically .1, .05, .01

LOGIC

" IF Ho is true, then there is only a (10%, 5%, 1%) chance of data set S yielding up that statistic. So probably Ho is not true"

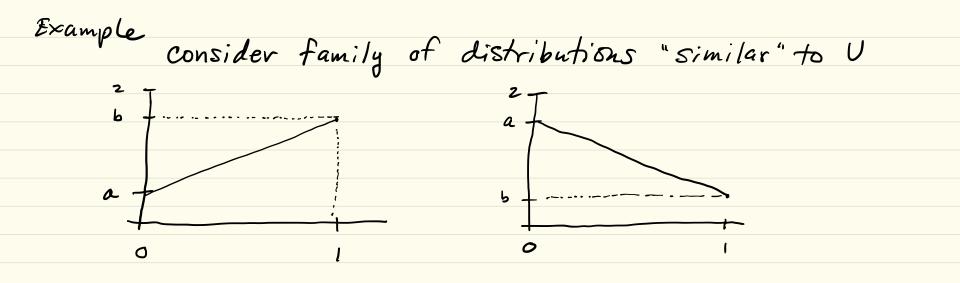
Called 1-& confidence level

"WITH 99% confidence we reject Ho"



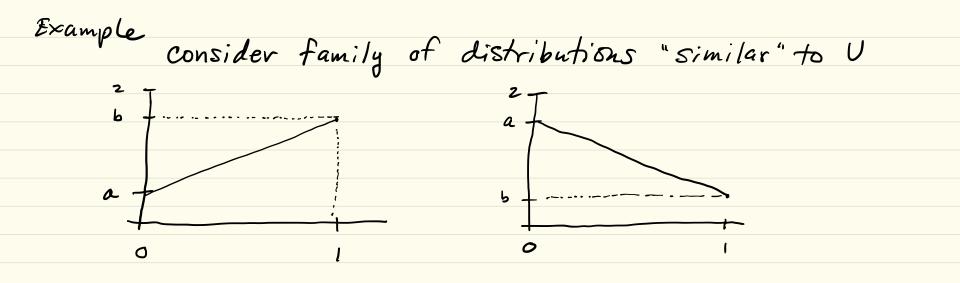
NOTICE - IS LARGEST DEVIATION

TEST FOR STATISTICAL UNIFORMITY USE K-S TABLE (look up) example 0.01 0.05 0.1 n \a n is # Samples 0.929 0.842 0.776 2 4 0.624 0.564 0,733 6.410 0.368 0.490 10 20 0.356 0.294 0.264 6.230 0.190 0.170 50 $\frac{1.63}{\sqrt{n}} \quad \frac{1.3c}{\sqrt{n}} \quad \frac{1.22}{\sqrt{n}}$ OVER 50 How to use : 1. Choose & for 1-& confidence, e.g. 95% 2. Compute empirical distribution function, measure D 3. Find statistic threshold d(n, K) given in & K 4. Reject Ho if D>d(n,~)



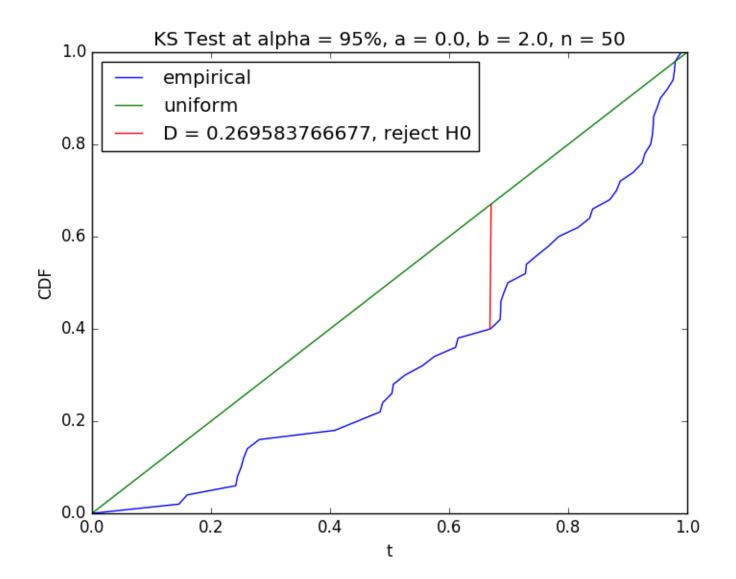
$$f(t) = \frac{a + (b - a) \cdot t}{N(a,b)}$$

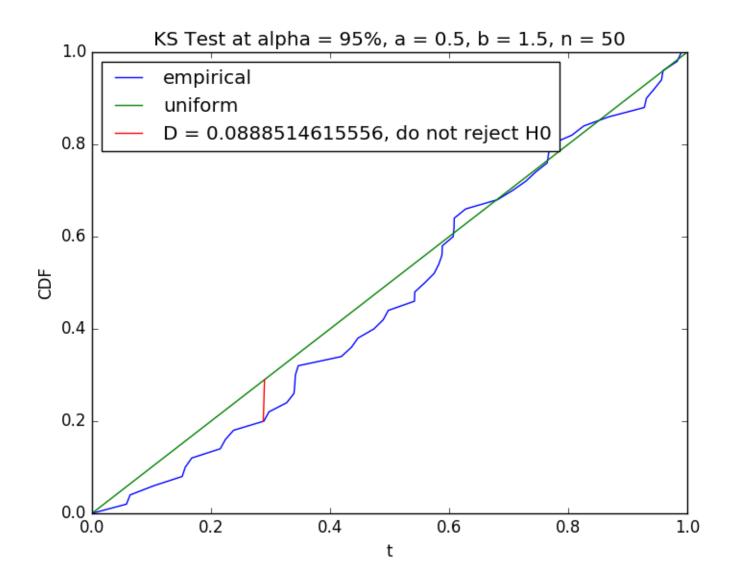
$$N(a,b) = \text{ area under curve} = \min\{a,b\} + |b-a|/2.0$$
Notice that $b = 20 - A$ and that $|u(0,1)|$ has $a = b = 1.0$

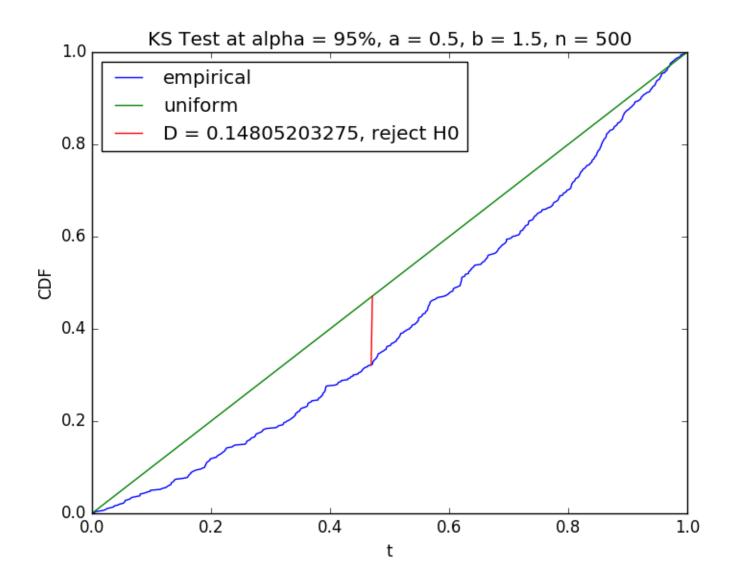


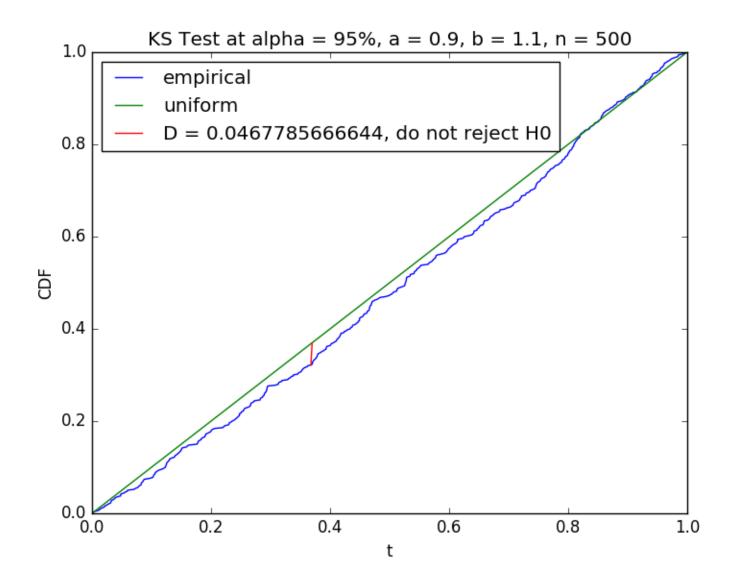
$$f(t) = \frac{a + (b - a) \cdot t}{N(a,b)}$$

$$N(a,b) = \text{ area under curve} = \min\{a,b\} + |b-a|/2.0$$
Notice that $b = 20 - A$ and that $|u(0,1)|$ has $a = b = 1.0$









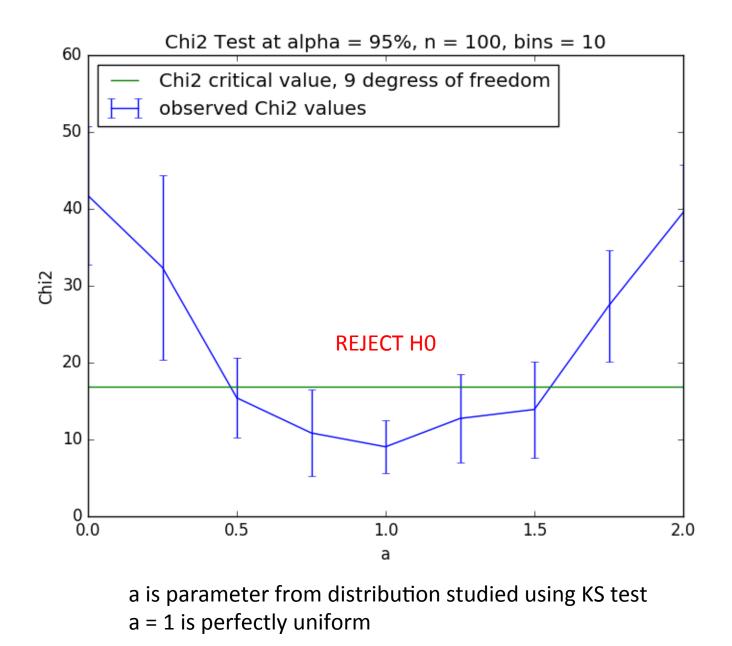
Chi-square test create n equi-length partitions · Bin each 5; E {5,, 52, ..., 5, }

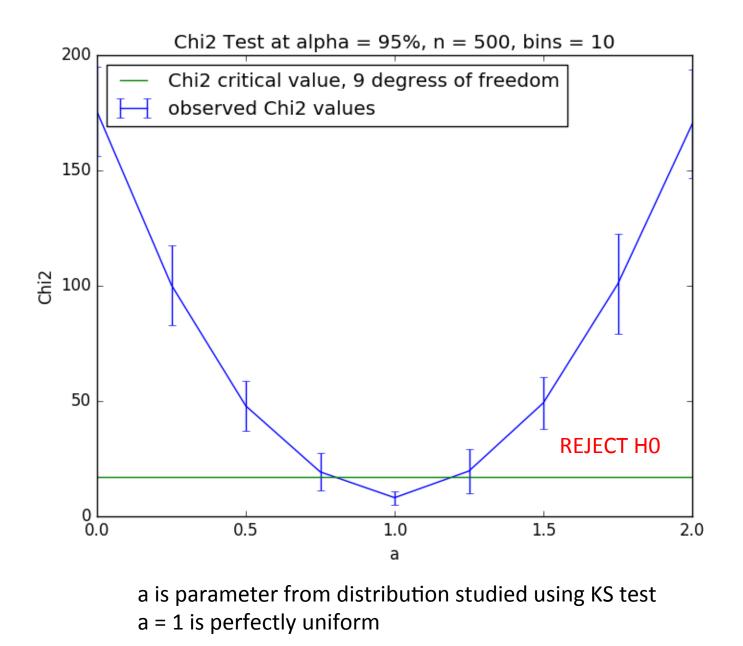
- · Under the assumption of uniformity, bins will get approximately the same number of samples, N/n
- · Let Oi be the OBSERVED number of samples in

 $\left[\frac{i-1}{n},\frac{i}{n}\right)$ · compute $\mathcal{X}_{o}^{2} = \sum_{i=1}^{n} \frac{\left(O_{i}-N/n\right)^{2}}{N/n}$ N 250

. said to have n-1 degrees of freedom

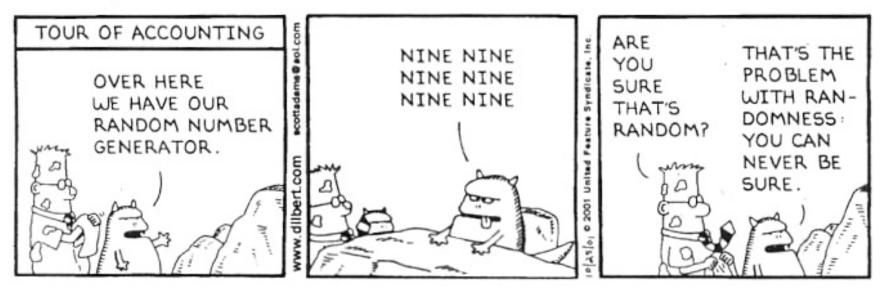
· compare against critical value of X, distribution "Too LARGE. taken to mean uniformity is unlikely

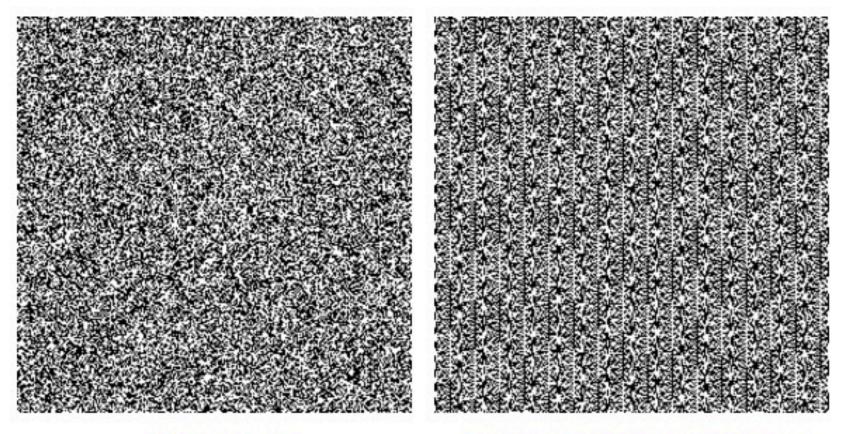




How can you tell whether your RNG produces independent numbers?

DILBERT By Scott Adams

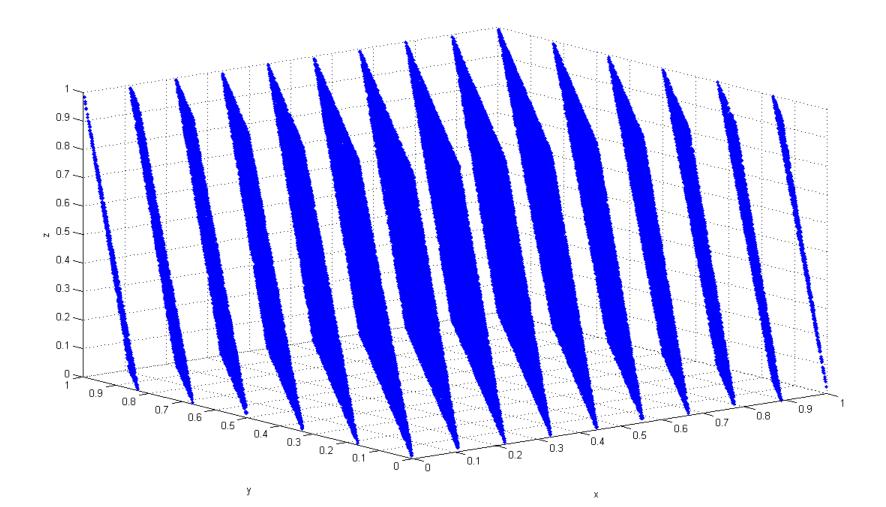




RANDOM.ORG

PHP rand() on Microsoft Windows

Test: plot (u_n,u_{n+1}) Patterns suggest lack of independence



Plot of (u_{n-1}, u_n, u_{n+1}) using (old) rand() generation from early Unix

TEST FOR INDEPENDENCE Given sequence of generated random numbers $S_1, S_2, \dots S_k, \dots S_N$ with $S = \frac{1}{N} \sum_{j=1}^{N} S_j$ we can test for autocorrelation between every in numbers $\frac{1}{1}$ Ji, Si4,, ..., Si+m, ... Si+2m ...- $\begin{array}{ll} & \mathcal{K}-lag \quad autocorrelation \\ & \widetilde{\delta}_{k} = & \overset{N-k}{\underset{i=1}{\overset{\sum}{\frac{\sum}{S_{i}-\overline{S}}(S_{i}-\overline{S})}}} \\ & \widetilde{\delta}_{k} = & \overset{N-k}{\underset{i=1}{\overset{\sum}{\frac{\sum}{S_{i}(S_{i}-\overline{S})}}}} \end{array}$ When $\{S_i, S_{i+m}, S_{i+2m}, ..., \}$ are independent and set size is large, then En is approximately normal, mean=0, v = 1

TESTING FOR RANDOMNESS, TYPICALLY ONLY LAG-1 TEST Subject 8, to a "two tail" test R { value < - tay = 2/2 } / Ro E value > tap = x/2 5 JEI tul top O=1 a positive value above $t_{\alpha/2}$ or a negative value below - $t_{\alpha/2}$ is evidence of non-independence Look up ta/2 values from standard normal table.

