ECE/CS 541 Computer System Analysis: Intro to Queueing Theory II

Mohammad A. Noureddine

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Fall 2018

Learning Objectives

- Or what is this course about?
- At the start of the semester, you should have
 - Basic programming skills (C++, Python, etc.)
 - Basic understanding of probability theory (ECE313 or equivalent)
- At the end of the semester, you should be able to
 - Understand different system modeling approaches
 - Combinatorial methods, state-space methods, etc.
 - Understand different model analysis methods
 - Analytic/numeric methods, simulation
 - Understand the basics of discrete event simulation
 - Design simulation experiments and analyze their results
 - Gain hands-on experience with different modeling and analysis tools

Announcements

- Midterm on Tuesday November 6, 2018
 - In class
 - Closed book, one A4 sheet
 - Everything include up until lecture on Tuesday October 30
- Submit Homework 3 on Compass by Sunday November 3 at 11:59 pm

Outline for Today

- Little's Law
- M/M/1 Queue Analysis
 - Some computation results
- M/M/1/B Queue Analysis
- M/M/m Queue Analysis
- /* M/M/m/B Queue Analysis */
- /* M/G/1 queues and comparison */

Notation

• We will be using **Kendall's notation** for parallel server queues

Slide 5

Examples

- M/M/1
 - Exponential interarrivals
 - Exponential service times
 - 1 server
 - Infinite population
 - Infinite buffer size
 - First in first out
- M/G/c/B
 - Exponential interarrivals
 - General service times
 - c server
 - Finite buffer of size B

Implicit or "defaults" in case not specified

More Notation

• π_n , P_n : steady-state probability of having n customers in the system

• $P_n(t)$: probability of there being n customers in the system at time t

• λ : arrival rate

• μ : service rate of one server

• ρ : server utilization

• S_n : service time of n'th arriving customer

• W_n : total time spent in the system by n'th arriving customer

• W_n^Q : total time spent in the queue by customer n

• L: long-run time-average number of customers in the system

• L_Q : long-run time-average number of customers in the queue

• W: long-run average time spent in the system per customer

• W_0 : long-run average time spent in the queue **per customer**

Little's Law

- Not a little result: part of the queueing fold literature for the past century
- Formal proof due to J.D.C. Little in 1961

Little's Law

- (Average number in system) = (arrival rate) x (average time in system)
- $L = \lambda W$
- Notice that we did not make any assumptions about the system
 - No assumptions about arrival process
 - No assumptions about number of servers
 - No assumptions about queue discipline
- Little's law applies to any "black box" queue assuming:
 - The system is work conserving
 - The system is stable, i.e., can reach a steady state
 - Arriving customer will eventually leave
 - Exit rate is equal to the arrival rate

Heuristic Proof

- Let n(t) be the number of customers in the system up to time t
- Let *T* be a long period of time
- Let A(T) be the area under the curve n(t) over the time period T
- Let N(T) be the number of arrivals in the time period T

Heuristic Proof

• Average value of n(t) over T is its integral over T divided by T, i.e.,

$$L(T) = \frac{A(T)}{T}$$

• At each time instant t, each customer of n(t) is accumulating wait time, so we can obtain the average cumulative waiting time as A(T), so

$$W(T) = \frac{A(T)}{N(T)}$$

• Also the arrival are countable over T, so we can estimate their rate as

$$\lambda(T) = \frac{N(T)}{T}$$

• By a slight manipulation, we can get that

$$L(T) = \lambda(T)W(T)$$

• In steady state as we send T to infinity, assuming quantities converge, we get

$$L = \lambda W$$

Addendum

• Little's law applies also to the other quantities

$$L = \lambda W$$

• For the average number of customers in the queue

$$L_Q = \lambda W_Q$$

• For the average number of customers in service

$$L_S = \lambda W_S$$

Also note that

$$L = L_S + L_Q$$

• Question: What is W_S in an M/M/1 queue? What about L_S ?

- Recall what M/M/1 means
 - Exponential interarrivals
 - Exponential service
 - 1 server
 - Infinite buffer space

• We previously represented this queue as a CTMC and analyzed its steady state behavior

$$\begin{cases} \rho = \frac{\lambda}{\mu} & \text{processor utilization} \\ \pi_0 = 1 - \rho \\ \pi_n = \pi_o \rho^n & n \ge 1 \end{cases}$$

• Question: But wait, how do we interpret π_n ?

- Let's compute some quantities of interest
- What is L?

$$L = \sum_{n=0}^{\infty} n\pi_n = \sum_{n=1}^{\infty} n\pi_0 \rho^n$$

$$= \sum_{n=1}^{\infty} n(1-\rho)\rho^n = \rho \sum_{n=1}^{\infty} n(1-\rho)\rho^{n-1}$$
what is this?
$$= \frac{\rho}{1-\rho}$$

• Now, let's find W

$$L = \lambda W \implies W = \frac{L}{\lambda} = \frac{\frac{\rho}{\lambda}}{1 - \rho}$$

• Expand this further and we get

$$W = \frac{1}{\mu - \lambda}$$

- Question: Why is W > 0?
- Question: Let W be the $random\ variable$ representing the time spent in the system in steady state.
 - What is the distribution of W?

• What is the distribution of \widetilde{W} ?

Oh Law of Total Probability, I summon thee, Master!

- What is the distribution of W?
- Let \widetilde{N} be the random variable representing the number of customers in the system (in steady state)
- Question: What is $P(\widetilde{N}=n)$?
- If $\widetilde{N} = 0$, then waiting time is only service time, i.e., exponential (μ)
- If $N=n\geq 1$, then waiting time is a sum of (n+1) independent exponentials, each with rate μ , => Erlang(n+1, μ)

- What is the distribution of W?
- If $\widetilde{N} = 0$, then waiting time is only service time, i.e., exponential (μ)
- If $N=n \ge 1$, then waiting time is a sum of (n+1) independent exponentials, each with rate μ , => Erlang(n+1, μ)
- So we can write:

$$f_{\widetilde{W}}(x) = \pi_0(\mu e^{-\mu x}) + \pi_0 \sum_{n=1}^{\infty} \frac{\mu^{n+1} x^n \rho^n e^{-\mu x}}{n!}$$

• Simplifying above expression (as done in class), we get

$$f_{\widetilde{W}}(x) = (\mu - \lambda)e^{-(\mu - \lambda)x}$$

• What is $E[\widetilde{W}]$? Sanity check using Little's law

Impact of ρ

- Consider a system in which we fix $\mu = 1$
- Observe the mean number of customers in the system as ρ approaches 1!

M/M/1/B Queue

- Note that in this class, we will consider B to be the system capacity
 - i.e, B-1 customers in the queue and 1 customer in service
- Now the resulting CTMC has a finite state space

• Use the balance flow equations to compute the steady state occupancy of the CTMC

• After solving the balance equations, we get

$$\begin{cases} \pi_0 = \frac{(1-\rho)}{(1-\rho^{B+1})} \\ \pi_n = \rho^n \pi_0 & 1 \le n \le B \end{cases}$$

Where

$$ho = rac{\lambda}{\mu}$$

• However, note that the server utilization is different!

$$U = 1 - \pi_0 = \rho(1 - \pi_B)$$

• Note that this is smaller than ρ , why?

• We can also compute the additional quantities for this queue

$$L = \sum_{n=0}^{B} n\pi_n = \sum_{n=0}^{B} n\rho^n \pi_0$$

• Using some mathematical magic, we get

$$L = \frac{\lambda (1 + B\rho^{B+1} - (B+1)\rho^{B})}{(\mu - \lambda)(1 - \rho^{B+1})}$$

- Let's use Little's law
 - But wait, what is the arrival rate?

$$\lambda_{effective} = \lambda(1 - \pi_B)$$

Now use Litte's law

$$W = \frac{L}{\lambda_{effective}}$$

M/M/m Queues

- Now, consider the case where we have m servers, operating in parallel
 - All have service rate of μ
- We still have a single queue of infinite capacity
- Customer arrivals form a Poisson process with rate λ
- First, let's consider the equivalent CTMC

• Now we can build the balance flow equations and solve for π

M/M/m Queues

- Again, we will use the balance flow equations.
- First, set

$$\rho = \frac{\lambda}{m\mu}$$

• Solving the balance equations, we get

$$\pi_n = \begin{cases} \frac{(m\rho)^n}{n!} \pi_0, & n < m \\ \frac{\rho^n m^m}{m!} \pi_0, & n \ge m \end{cases}$$

• It turns out that ρ is the overall system utilization, and

$$L_Q = \frac{\rho}{(1-\rho)} \frac{(\rho m)^m}{m!(1-\rho)} \pi_0 \qquad L_S = m\rho$$

M/M/m/B Queues

- Again B in this case is the system capacity
- We have m parallel servers and a single queue with a finite buffer
 - Recall that we can fit B m customers in the queue and m in the servers
- As usual, let

$$\rho = \frac{\lambda}{m\mu}$$

• By solving the balance flow equations, we can obtain

$$\pi_n = \begin{cases} \frac{(m\rho)^n}{n!} \pi_0, 1 \le n \le m - 1\\ \frac{\rho^n m^m}{m!} \pi_0, n = m, m + 1, \dots, B \end{cases}$$

M/M/m/B Queues

• Then we can use the fact that

$$\pi_0 + \sum_{n=1}^{B} \pi_n = 1$$

To obtain,

$$\pi_0 = \left(1 + \frac{(1 - \rho^{B-m+1})(m\rho)^m}{m!(1 - \rho)} + \sum_{n=1}^{m-1} \frac{(m\rho)^n}{n!}\right)^{-1}$$

• For using Little's law, we also note that we must consider the effective arrival rate, since arrivals after the queue is full do not enter the system, i.e.

$$\lambda_{eff} = \lambda (1 - \pi_B)$$

• We similarly obtain the utilization

$$U = \frac{\lambda_{eff}}{m\mu} = \rho(1 - \pi_B)$$