ECE/CS 541 Computer System Analysis: Intro to Queueing Theory

Mohammad A. Noureddine

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Fall 2018

Learning Objectives

- Or what is this course about?
- At the start of the semester, you should have
 - Basic programming skills (C++, Python, etc.)
 - Basic understanding of probability theory (ECE313 or equivalent)
- At the end of the semester, you should be able to
 - Understand different system modeling approaches
 - Combinatorial methods, state-space methods, etc.
 - Understand different model analysis methods
 - Analytic/numeric methods, simulation
 - Understand the basics of discrete event simulation
 - Design simulation experiments and analyze their results
 - Gain hands-on experience with different modeling and analysis tools

Announcements

- Midterm on Tuesday November 6, 2018
 - In class
 - Closed book, one A4 sheet
 - Everything include up until lecture on Tuesday October 30

Outline for Today

- Introduction to Queues
- Some notation before we start
- Little's Law

Why Queues?

- Because the **DMV**!
 - Your trips to the DMV will now never be the same
- System generally have limited capacity to perform service
 - Queue are bound to be formed
- We need tools to reason about queues so we can design them better (allegedly!)
 - Utilization
 - Number of jobs/customers in line
 - Waiting times
- Analytical solutions possible sometimes
- More complex models require simulation!

Objectives in this Course

- Introduce Queueing theory notation
- Understand Little's theorem
 - It's really not of little impact!
- Obtain closed form solutions for simple models
 - M/M/1 queues
 - M/M/c queues
 - M/M/m/B queues
- Insights into M/G/1 queues and some comparisons

Key Elements

• Customer/Job:

- Anything that arrives at the system and requires service
- Example: people, machines, trucks, packets, etc.

• Server:

- Any resource that provides the requested service
- Example: repairpersons, airport runways, router, web server, etc.
- <u>Population</u>: the population of potential customers
 - Can be finite: arrival rate will depend on the state of the queue
 - Example: arrivals stop when customers see a very long line
 - Can be considered to be infinite
 - The arrival rate will be independent of the state of the queue

System Capacity

- Maximum number of customers/jobs that can be waiting in the queue
- Can be limited:
 - e.g., network switches, routers
 - The number of packets waiting to be processed depends on the buffer size (limited by switch's memory)
 - e.g., TCP SYN backlog
 - Number of half-open TCP connections
 - Drop new connections when backlog is full (check out SYN flood attacks)
- Can be unlimited:
 - DMV: Yes, I would like to wait outside when it's 19°
 - Teenagers waiting in the streets to spend their parents' hard-earned money on the new iPhone

Arrival Process

- For an **infinite population**, we can model the arrivals of customers or jobs at the system
- Random arrivals
 - For example, Poisson arrival process with rate λ
 - Inter-arrival times of customer are then i.i.d. exponentials with rate λ
- Scheduled arrivals:
 - Planes arriving at the runway (under ideal situations)
 - Definitely not at O'Hare.
 - By appointment
- At least one customer is always present
 - Sufficient raw material for an industrial machine

Queue Behavior

Queue Behavior & Discipline

Queue Behavior

- Actions of customers while in a queue waiting for service
 - Balk: leave when they see that the line is too long
 - Drive with an expired license
 - Renege: leave after being in the line when it's moving too slowly
 - Jockey: See previous slide

Queue discipline:

- Determination of which customer is chosen for service when server is free
 - First-in-first-out (FIFO)
 - Last-in-first-out (LIFO)
 - Service in random order (SIRO)
 - Shortest processing time first (SPT)
 - Service according to priority (PR)

Service Time & Mechanism

- We denote by S_i the service time of the i'th arrival to the queueing system
 - Generally a random variable, but can also be constant
 - $\{S_i, i \ge 0\}$ are usually assumed to be i.i.d., random variables
 - Exponentials for the largest part of this class
- A system will generally consist of several servers along with one or more interconnected queues
 - There can be m servers that are working in parallel
 - A system is work conserving if a server is never idle while a customer arrives or is in the queue
 - i.e., agent will not call her friend to gossip while you're waiting at the door for her to sign your paycheck (true story)
 - At least I got to listen to the full story

Notation

• We will be using **Kendall's notation** for parallel server queues

Examples

• M/M/1

- Exponential interarrivals
- Exponential service times
- 1 server
- Infinite population
- Infinite buffer size
- First in first out
- M/G/c/B
 - Exponential interarrivals
 - Exponential service times
 - c server
 - Finite buffer of size B

Implicit or "defaults" in case not specified

More Notation

• π_n , P_n : steady-state probability of having n customers in the system

• $P_n(t)$: probability of there being n customers in the system at time t

• λ : arrival rate

• μ : service rate of one server

• ρ : server utilization

• S_n : service time of n'th arriving customer

• W_n : total time spent in the system by n'th arriving customer

• W_n^Q : total time spent in the queue by customer n

• L: long-run time-average number of customers in the queue

• L_Q : long-run time-average number of customers in the queue

• W: long-run average time spent in the system per customer

 W_O : long-run average time spent in the queue **per customer**

Little's Law

- Not a little result: part of the queueing fold literature for the past century
- Formal proof due to J.D.C. Little in 1961

Little's Law

- (Average number in system) = (arrival rate) x (average time in system)
- $L = \lambda W$
- Notice that we did not make any assumptions about the system
 - No assumptions about arrival process
 - No assumptions about number of servers
 - No assumptions about queue discipline
- Little's law applies to any "black box" queue assuming:
 - The system is work conserving
 - The system is stable, i.e., can reach a steady state
 - Arriving customer will eventually leave
 - Exit rate is equal to the arrival rate

Heuristic Proof

- Let n(t) be the number of customers in the system up to time t
- Let *T* be a long period of time
- Let A(T) be the area under the curve n(t) over the time period T
- Let N(T) be the number of arrivals in the time period T

Heuristic Proof

• Average value of n(t) over T is its integral over T divided by T, i.e.,

$$L(T) = \frac{A(T)}{T}$$

• At each time instant t, each customer of n(t) is accumulating wait time, so we can obtain the average cumulative waiting time as A(T), so

$$W(T) = \frac{A(T)}{N(T)}$$

• Also the arrival are countable over T, so we can estimate their rate as

$$\lambda(T) = \frac{N(T)}{T}$$

• By a slight manipulation, we can get that

$$L(T) = \lambda(T)W(T)$$

• In steady state as we send T to infinity, assuming quantities converge, we get

$$L = \lambda W$$