ECE/CS 541 Computer System Analysis: Intro to state-space methods

Mohammad A. Noureddine

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Fall 2018

Learning Objectives

- Or what is this course about?
- At the start of the semester, you should have
 - Basic programming skills (C++, Python, etc.)
 - Basic understanding of probability theory (ECE313 or equivalent)
- At the end of the semester, you should be able to
 - Understand different system modeling approaches
 - Combinatorial methods, state-space methods, etc.
 - Understand different model analysis methods
 - Analytic/numeric methods, simulation
 - Understand the basics of discrete event simulation
 - Design simulation experiments and analyze their results
 - Gain hands-on experience with different modeling and analysis tools

Announcements and Reminders

- HW2 is out today!
 - Due by end of day on Sunday 10/07/2018
- Project proposals description posted!
 - Proposal due by end of day on 10/16/2018
- Support for students with disabilities:
 - University resources available through DRES
 - http://disability.illinois.edu/
 - Please see announcement on Piazza
 - https://piazza.com/class/jkvka0ddys4ee?cid=31

Announcements and Reminders

- Next week is Informal Early Feedback
 - Bring out your inner Internet troll
 - Use it to improve the course content!
 - Feedback will be anonymous
 - I will step out of the room while you fill them out
- Show up to class and fill out the feedback form
 - Receive 1 point on your participation grade!!

Probability Quiz

- Good performance overall
- Average score is 38
- Median score is 43
- If you scored less than 30, please come visit us during office hours!

Quiz and Homework Takeaways

- One misconception I noted in the quiz
 - "One of the coins is selected randomly and tossed *n* times yielding *n* straight tails"
 - This does **NOT** mean P(n tails) = 1
- Recall that always $\sum_{\omega \in \Omega} P(\{\omega\}) = 1$
- Use it as a sanity check!
- Homeworks
 - We are NOT testing your ability to search on stackoverflow!
 - Read the answer, make sure it's correct, understand it, reproduce it!
- Late policy
 - Let us know you want to use your late submission before we post the solution!

Tentative schedule

- Discrete Time Markov Chains (today and next lecture)
- Continuous Time Markov Chains
- Introduction to Game Theory
- Queuing Theory
- → Midterm Exam

• This concludes the theoretical part of the course, we'll move into simulation afterwards

Objectives for this Module

- Define and classify random processes
- Define Markov processes with focus on Markov chains
- Relax the independence assumption for modeling
 - Discrete Time Markov Chains (DTMC) modeling
 - Continuous Time Markov Chains (CTMS) modeling
 - Motivate queuing theory!
- Understand limitation of Markovian modeling
 - Higher level formalism (Petri-Nets, SANs)
- Markov chains in practice at Google