ECE/CS 541

Computer System Analysis:
Intro to state-space methods

Mohammad A. Noureddine
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Fall 2018

ECE/CS 541: Computer System Analysis. Fall 2018. Based on slides provided by Prof. William H. Sanders and Prof. David Nicol. Slide 1

Learning Objectives

 Or what 1s this course about?

» At the start of the semester, you should have
— Basic programming skills (C++, Python, etc.)
— Basic understanding of probability theory (ECE313 or equivalent)

« At the end of the semester, you should be able to
— Understand different system modeling approaches
« Combinatorial methods, state-space methods, etc.
— Understand different model analysis methods
* Analytic/numeric methods, simulation
— Understand the basics of discrete event simulation
— Design simulation experiments and analyze their results

— Gain hands-on experience with different modeling and analysis tools

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 2

Announcements and Reminders
* Probability quiz on September 20, 2018

— No calculators or cheat sheets

— Will provide pdf and cdf expansions if needed
» Will post HW1 solutions today

« HW2 coming up soon

— Covers combinatorial methods

» List of possible projects and ideas on the website soon
— How soon? Hopefully by the end of the week!

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 3

Lineage Driven Fault Inject (LDFI)

* So far, we’ve been thinking about how our system might fail
— How do we fail our system?

— Building RBDs, fault trees, reliability graphs, etc.

* But we have a treasure trove of our system did not fail
— 1.e., how our system gave us “good outcomes”

* Transformation the question from “could a bad thing ever happen”

— Use narrower “how did this good thing happen?”

« Answers can provide rich information about the different paths that a successful
request can take within our system

— Use the answers to prune out scenarios that do not really matter

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 4

Example

* Consider the following example:

— “Good outcome” = all acknowledged writes are durably stored.

« Consider a write that was durably stored
— Q: Why was that write durably stored?
— A: because it is stored on two replicas: rep4 and repB.

* Keep going backwards
— Q: Why was the write stored on repA

— A: because the client issued one or more broadcast requests to store a write

« Identified 4 important events that contributed to the good outcome of a durable
write

FE = {RepA, RepB, Bcastl, Becast1}

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 5

Lineage Graph

» Backward reasoning brings us to a
: : The write
lineage graph for that durable write < <tablo
» Space of possible failure scenarios is 2F \
— But not all are interesting Stored on Stored on
L RepA RepB
— Failing RepA and Bcast2 tells us . —
nothing N/
« Random strategy cannot tell us that! T

Bcast1 Bcast2

* Which failure scenarios are then , "
interesting?
— Build a fault tree Client Client

Figure 1. A simple lineage graph

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 6

Build the Fault Tree

* They don’t actually build the fault tree
— They build the equivalent Conjunctive Normal Form (CNF) expression

RepAV B CCLSﬂ)I\ Path in lincage

RepA NV Bcast2) graph
RepB V Bcastl)
)

— CNF: product of sums

N
A
A (RepB V Bceast2

(
(
(
(

h
- o =

RepA Bcastl RepA Bcast2 RepB Bcastl RepB Bcast2

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 7

Min set of useful scenarios

 We can now obtain the minimal solution to the CNF formula that we generated
— Use off-the-shelf SAT solvers

« We see that the only two scenarios that we care about are

{{repA,repB},{Bcastl, Bcast2}}

* Qutcome of one execution might not reveal all the dependencies
— Run the failure scenario, one of two things will happen
» A new execution path will be revealed
— Update the fault tree and rerun
» System fails and you have uncovered a fault tolerance bug

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 8

LDFI Process

Eiﬁis
4. REPEAT
1. Success Fail
Why? Solve
: Encode

3.CNF

2. Lineage

Figure 2. Overview of LDFL

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 9

I WAS TRYING To
FIGURE OUr WHY
MY BROWSER LUAS
ACTING WEIRD:

LDFI Process

TURNS OUT IT WASNT
THE BROWSER—THE

ISSUE. WAS WITH My

KEYBOARD DRIVER.

/

L

DEBUGGING 7HAT LED
ME TO A MYSTERIOUS

ERROR MESSAGE. FROM
A SYSTEM UTILITY...

)

ANYWAY, LONG STORY” SHORT,
L FOUND THE SWORD OF
MARTIN THE LARRIOR.

T THINK AT SOME
POINT THERE YOU
SWITCHED PUZ2LES.

i}

Figure 2. Overview of LDFL

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 10

Results

* Implemented at Netflix to find fault tolerance bugs

« Paper provide interesting details about the challenges they faced and how they
overcame them

— I do recommend reading the paper

« LDFI at Netflix covered the failure space after doing 200 experiments

— Number of possible scenarios in considered case study is 2%

* Revealed 11 new critical failures that could prevent a customer from loading
the initial Netflix homepage

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 11

Further Reading

» Systems are becoming large, distributed and complex
* QOur reliability process is not scalable to such systems

* So how do we build fault trees
— Let the computers do it — Use machine learning

 LIFT: Learning Fault Trees from Observational Data
— Meike Nauta et al.
— Appeared at QEST 2018
— Auvailable on the course website

« Use failure datasets to generate fault trees and use them for analysis

« Interesting project ideas!!!

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 12

Objectives for this Module

* Define and classify random processes
* Define Markov processes with focus on Markov chains
* Relax the independence assumption for modeling
— Discrete Time Markov Chains (DTMC) modeling
— Continuous Time Markov Chains (CTMS) modeling
* Motivate queuing theory!
e Understand limitation of Markovian modeling
— Higher level formalism (Petri-Nets, SANSs)

e Markov chains in practice at Google

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 13

