ECE/CS 541

Computer System Analysis:
Combinatorial Methods

Mohammad A. Noureddine
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Fall 2018

ECE/CS 541: Computer System Analysis. Fall 2018. Based on slides provided by Prof. William H. Sanders and Prof. David Nicol. Slide 1

Learning Objectives

 Or what 1s this course about?

» At the start of the semester, you should have
— Basic programming skills (C++, Python, etc.)
— Basic understanding of probability theory (ECE313 or equivalent)

« At the end of the semester, you should be able to
— Understand different system modeling approaches
« Combinatorial methods, state-space methods, etc.
— Understand different model analysis methods
* Analytic/numeric methods, simulation
— Understand the basics of discrete event simulation
— Design simulation experiments and analyze their results

— Gain hands-on experience with different modeling and analysis tools

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 2

Announcements and Reminders

« HWI is out
— Due on September 18, 2018 at the start of class

* Probability quiz on September 20, 2018

— First 30 minutes of class

* Project Proposals due near the first week of October

— List of possible projects and ideas on the website soon

* TA office hours: MW: 4:00 — 5:00 pm 1n CSL 231

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 3

Objectives for this Module

* Introduce combinatorial (non state-space) methods of modeling

* Develop and formulate models of system reliability

» Introduce different reliability formalisms

« Combinatorial models for improved testing research at Internet scale

— Technique generated out of UC Santa Cruz and adopted by Netflix

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 4

Reliability formalisms

Lecture Outline

— Reliability block diagrams

— Fault trees
— Reliability graphs
Case study

— Automating Failure Testing Research at Internet Scale

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 5

Summary

A system comprises N components, where the component failure times are given by

the random variables X|, . . ., Xy. The system fails at time S with distribution F if:
. N
All components fail as (t) =11 Fy, (t)
i=1 ‘
N
One component fails Fg(t) = 1— _Hl (1 — Fx, (1))
1=

N
N : y
k components fail, i.i.d Fs(t) = Z () Fx () (1 — Fx (t))N

:)
1=k
k components fail, _ _
general case Fs (t) - (XI_GIQFX (t)> (XI;EIQ (1 i (t)))

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 6

Reliability Formalisms

There are several popular graphical formalisms to express system reliability. The
core of the solvers 1s the methods we have just examined.

In particular, we will examine
« Reliability Block Diagrams
» Fault Trees
 Reliability Graphs

There is nothing particularly special about these formalisms except their popularity.
It 1s easy to implement these formalisms, or design your own, in a spreadsheet, for
example.

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 7

Reliability Block Diagrams

* Blocks represent components.

» A system failure occurs if there 1s no path from source to sink.

Series: source sink
System fails if any component fails. C1 & C3
Parallel: C
System fails if all components fail. o CH "o
C3
k of N: o 4
System fails if at least k£ of N I ok
components fail. ¢ C9 ¢
C3
2 of 3

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 8

Example

A NASA satellite architecture under study is designed for high reliability. The
major computer system components include the CPU system, the high-speed
network for data collection and transmission, and the low-speed network for
engineering and control. The satellite fails 1f any of the major systems fail.

There are 3 computers, and the computer system fails if 2 or more of the computers
fail. Failure distribution of a computer is given by F..

There is a redundant (2) high-speed network, and the high-speed network system
fails if both networks fail. The distribution of a high-speed network failure is given
by Fy.

The low-speed network 1s arranged similarly, with a failure distribution of £7.

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 9

RBD Example

source

LSN

computer HSN

computer

computer HSN
2 of 3

LSN

sink

(Z (Z> ‘(1 - Fo(t)* > (1= Fu(®)?) (1= (Fu(1)?)

ECE/CS 541: Computer

System Analysis. Fall 2018.

Slide 10

RBD Example

computer HSN [.SN
e computer e
computer HSN LSN
2 of 3
Probability all three systems survive to t
(k 9{ N \
f3 3 | ‘ max max
Pty = 1| 1= % (3) P’ - e | 1= ()P | 1- (e
_— /

NG - /
-~

min

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 11

RBD Example

/

sink

(

1= (F(t))’

computer HSN LSN
e computer

computer HSN LSN

20of 3
Probability low speed network survives to t
() kof N \\
3 max

Fst) =1~ | 1= % (3) Fe(0'(1 - Fe()* (1 - <FH<t>>2)

max
)

J

~\~
min

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 12

RBD Example

HSN

LS

N

HSN

LS

N

sink

Probability both components of low speed network fail by t

kof N

computer
source
® computer
computer
20of 3
("3
Fs(t)=1-

-y (3) Fo(t)'(1 - Fo(t)* (

A

/

max

1 — (Fr(t))?

)|

~\~
min

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 13

Fault Trees

« Components are leaves in the tree, the system fails if the root is true.

« Explicit representation of system decomposition and dependency of system
operation on subsystems

« Fault tree expresses logical conditions necessary for system failure

AND gates
true if all the components are true (fail). @
OR gates ﬂ
true 1f any of the components are true (fail).
lc1] [c2] [c3]

k of N gates &

true if at least k of the components are frue (fail).

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 14

Fault Tree Example

Consider the NASA example again

How would we solve this fault tree?

OR

Use min formula

Use k of N formula

NS
[

AND)

Hl1

Use max formula

H2

Use max formula

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 15

S = (Cl/\

Fault Trees - Further Analysis

Srp=51VSV.S;

= (01 VAN 02) V (Cl VAN Cg) V (CQ VAN 03) V (H1 VAN Hg) V (Ll VAN Lg)

Disjunctive Normal Form (DNF)

02) V (Cl A 03) V (CQ A\ Cg)

N

Cl] |C2] |C3

[

Hl1

AND

H2

L1

Sy = (H1 N H»)

L2

S3 = (L1 A Lo)

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 16

Fault Trees - Further Analysis

Explicit representation of system decomposition and dependency of system
operation on subsystems

Sp=(C1NCo)V(Cy NC3)V (Co NCs)V (Hy ANHs) V (L1 N Lo)

Writing the tree in DNF gives us a sum (disjunction) of products (conjunctions)

— Each product identifies sets of components, which when all of them fail,
cause the system to fail

 We can convert any Boolean expression into its DNF

We can further use the Boolean expressions to identify the minimum number of
components needed for a system to fail

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 17

Reliability Graphs

« Reliability graphs are a more general way of representing complex interactions

— RBDs and FTs general a special kind of graphs called “series-parallel”
graphs

» The arcs (or edges) in the graph represent components and each has a failure
distribution

— A failure occurs if there 1s no path from the source to the destination

. source e, g, sink
We can represent series: .—Q—Q—Q—.
Fe,
source sink

* We can represent parallel:

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 18

Reliability Graphs

« Reliability graphs can also capture more complex dependencies and interactions

* For example, consider a network that fails when there 1s no path from the source
to the destination

source sink

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 19

Solving Reliability Graphs

 How do we approach solving the reliability graph of the network?

* Brute Force:

— Enumerate all possible scenarios
— Check which ones lead to there not being a path
— Compute probability distribution accordingly

« Use independence assumption

 “Smarter” approach:

— Link C seems to be important to understanding
the network.
— Condition on the status of link ¢ SOULC sink

— Use laws of probability

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 20

Solving Reliability Graphs
« By the law of total probability
P(Sgt):[P(sgt | cgtjxp(cgt)+13(sgt 1O >t)x P(C > 1)

~"

Fs | ¢ fails Fc () Fs | ¢ up (1-Fc(t))

» First, let’s condition on link C being down
* The system becomes the series 4 — D composed in parallel with the series B — E

source ’ 0 sink

* Can be solved using the standard tools we have developed so far

— Max of two min’s
P(S<t|C<t)=[—(1—Fat)) (1 - Fp@®) (L — (1 - Fu(t)) (1 — Fp(®))]
Serites A—D Series B—E

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 21

Solving Reliability Graphs
By the law of total probability

P(SSH=P(S<t|C<xPC<Y 4{13 s<t|0>tjxp(0>t)

Fs | ¢ fails Fc(t) Fs | ¢ up (1-Fc(t))

Second, let’s condition on link C being up
The system becomes the series of two parallels

A D :
O e
B E

Can be solved using the standard tools we have developed so far

— Min of two max’s

P(S<t|C>t)=1-(1-[Ea®)Fp(t) (1 -(Fp(t)Fa()))
Parallel A—B Parallel D — E

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 22

Conditioning Fault Trees

* In more general cases, fault trees can be used to represent systems where a
component appears more than once in the fault

— Relaxing the independence assumption that we made initially
* One approach to deal with such cases is to also use conditioning

* Given a fault tree for a system S and component C that appears more than once
in the tree

— Use the law of total probability again

Fs(t) = Fsic ran(t)Fo(t) + Fsjc o (8)(1 — Fo(t))

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 23

Example

« Component B appears under both branches of the following fault tree
e PS<t|B<Lt)=?

« Let’s look at the formula for S: S=(AAB)A (BVC)

« IfBisdown(i.e., B=1), we get
S=ANH)AN(AVC)=AN1=A S
* Sowe can know that Fg|p ;.04(t) = Fa(t)

« IfBisup (i.e.,, B=0), we get

S=(AN0O)ANOVC)=0
* So we can know that Fg|p ,,(t) =0

Fs(t) = Fg(t)Fa(t)

A B

B C

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 24

Example

Fs(t) = FB(t)FA(t)

« Component C is irrelevant, i.e., does not impact the reliability of the system

 We could see that from the expression for S:

S=(AANB)A(BVCO)
—~(AABAB)V(AABAC) S
=(AANB)V(AANBAC)
=(AANB)A(1VC)
= (AN B)

« Sanity check: Apply formula for max of two

components

A B B C

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 25

Reliability/Availability Tables

A system comprises N components. Reliability of component i at time 7 is given by
R(?), and the availability of component i at time 7 is given by A4 y(¢).

Condition System Reliability System Availability
system fails if all Rs(f)=1—ﬁ(1—RXl~(f)) A5(0)=1-TT0-4,()
components fail i1 i=1

system fails if n n
one component fails Ry ()= H Ry (t) A, (t)= H Ay, (¢)
i=l1 =

system fails if at

ek componets £, 3 TR OROT 40= 37 J0- 40V 4,0

fail, identical distribution

gytn?%“tf e R0)- ;k(Q(I—RX(r))](QRX(r)] 45(0)- g;k()];(l-@(r)))@g@a)]

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 26

Reliability Modeling Process

S
Modify Design l

Define the system |[a——

\ |

Define "proper"
service

Subcomponents?

rNo

Compute
Reliability

Meet Spec?

Yes

v

©

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 27

Combinatorial Methods in Practice

« ‘“Automating Failure Testing Research at Internet Scale”
— P. Alvaro, et al.
— A collaboration between Netflix and UC Santa Cruz
— Appeared in the 2016 ACM Symposium on Cloud Computing (SoCC’16)

* Based on a previous paper by the same author
— “Lineage-Driven Fault Injection”

— Appeared in the 2015 International Conference on Management of Data
(SIGMOD’15)

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 28

| ;t;’rg:;ignalities human interface system
HI char devices .y INterfaces core
user cdev_add System Call Interace system files
space /\\\ e S
interfaces e oo
:ndes’;‘s::eavisﬁles o :::lh‘m;“ o [e ccdev_map sys_epol_croate
h T s sys_init_ module m'mb?-o_‘a.._u
=l |
virtual

. user peripherals
electronics ,

Motivation

Linux kernel map

processing memory storage
s rocesses memory access i i i
o RS - ry _, files & directories
sys_kill sys. viork sys_brk on.sros access
sys_execve SY5.S Sys_mmap shm_vm_ops. b sys_open
do-gacton sys_sysinfo "‘—:’,‘1""“":" o g oot e T
4 e 818 select o pun.
tinux_binfmt e sys_flock o o
sys_getimeotday sys_futex si_meminfo sys_mprotect o
S5 tme sys_mincore T TE
s tmas idevimem
mem_fops [spe
/proc/imeminfo ‘mmap_mem

Iprocseliimaps

irtual

vmalloc_init

memory

DMA

sys_msync

disk controllers

MMU SCS! SATA

N . .

networking
. Sockets access
sys_socketcall
sys_connoct sys_socket
‘sys_accept
ﬁ:":‘ Iprocinet/
sys_sendmsg tepd_seq_show
Sy5_recvmsg 5 proc_seq Show dew
sys_setsockopt _cache seq show

m\joe\l

protocol famill%s
nelint _sook qrote_y. feox

\’M unix_famiy_ops
proto_ops

network controllers

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 29

Motivation: Distributed Systems
« Imagine this kernel running several services in a distributed large scale date
center

— Netflix, Amazon, Google, Facebook, etc.

» Large scale systems must be built to tolerate a variety of hardware and software
faults

— Mainly use replication to provide fault tolerance
* Both at the software and hardware level
— Building a static fault tree for the entire data center is infeasible
» Server get upgraded, scaled up, etc.
« Complex routing protocols
* Multiple Sources of failures
— Building a fault tree for a piece of distributed software 1s even worse!

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 30

Motivation: Chaos Engineering

e Chaos Engineering:

— “experimenting on a distributed system in order to build confidence in the
system’s capability to withstand turbulent conditions in production”

— Netflix’s chaos monkey:

()

* https://github.com/Netflix/chaosmonkey I'E I.I ﬁl.lﬂ g I_.I
« Use automated tools to provide end-to-end tests for business-critical
assumptions about the system

— Inject failures and observes the system’s behavior and report

» “Confidence in the end-to-end behavior of the system is manufactured by
experimenting with worst-case failure scenarios in the production, scaled-out
system”

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 31

https://github.com/Netflix/chaosmonkey

Chaos Engineering: How?

* But how do we choose which failures to inject?
— Which hardware to fail?
— Which links to fail?
— Which software to crash?

» The combinatorial space of faults across a distributed system (the failure
scenarios) grows exponentially in the number of potential faults

« Current approaches:

— Random: Select a failure scenarios at random
e Not good: Why?
— Programmer-guided: Bring your developers together and use their intuition
about the software they designed and implemented

* Yeah, right?

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 32

Lineage Driven Fault Inject (LDFI)

* So far, we’ve been thinking about how our system might fail
— How do we fail our system?

— Building RBDs, fault trees, reliability graphs, etc.

* But we have a treasure trove of our system did not fail
— 1.e., how our system gave us “good outcomes”

* Transformation the question from “could a bad thing ever happen”

— Use narrower “how did this good thing happen?”

« Answers can provide rich information about the different paths that a successful
request can take within our system

— Use the answers to prune out scenarios that do not really matter

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 33

LDFI

e Lineage Driven Fault Tolerance 1s based on two insights
— Fault tolerance is redundancy

 Fault tolerance 1s achieve if a system can provide alternative ways in
which one can obtain the same outcome

 If we had perfect information about all the possible ways in which a
system can service a request, we can determine which faults it can
tolerate and which it cannot

— Usually we moved forward: start from an initial state and explore the space
of possible executions

It would be more efficient for identifying fault tolerance bugs to work
backwards

 Start from a successful execution and move your way back
— From effects to causes

« What combination of fault could have prevented the good outcome

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 34

LDFI: How it works?

« Begin with a correct outcome and ask:

— How did this outcome occur?

« Obtain a lineage graph

— Captures all the computations and data the contributed to producing that
good outcome

* Run this several time and it would reveal the implicit redundancy in your
deployment

— What are the alternative computation paths that are sufficient to produce a
certain good outcome

* Now it becomes tractable to reason about important failures for that good
outcome you are trying to achieve

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 35

Example

* Consider the following example:

— “Good outcome” = all acknowledged writes are durably stored.

« Consider a write that was durably stored
— Q: Why was that write durably stored?
— A: because it 1s stored on two replicas: rep4 and repB.

* Keep going backwards
— Q: Why was the write stored on repA

— A: because the client issued one or more broadcast requests to store a write

» Identified 4 important events that contributed to the good outcome of a durable
write

E = {RepA, RepB, Bcastl, Bcast1}

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 36

Lineage Graph

» Backward reasoning brings us to a
: : The write
lineage graph for that durable write < <tablo
» Space of possible failure scenarios is 2F \
— But not all are interesting Stored on Stored on
L RepA RepB
— Failing RepA and Bcast2 tells us . —
nothing N/
« Random strategy cannot tell us that! T

Bcast1 Bcast2

* Which failure scenarios are then , "
interesting?
— Build a fault tree Client Client

Figure 1. A simple lineage graph

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 37

Build the Fault Tree

* They don’t actually build the fault tree
— They build the equivalent Conjunctive Normal Form (CNF) expression
— CNF: product of sums

(RepAV B castl)l\ Path in lineage
A (RepAV Bcast2) graph
A (RepB V Bcastl)
A |(RepB V Bcast2)

-
- O =

RepA Bcastl RepA Bcast2 RepB Bcastl RepB Bcast2

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 38

Min set of useful scenarios

 We can now obtain the minimal solution to the CNF formula that we generated
— Use off-the-shelf SAT solvers

« We see that the only two scenarios that we care about are

{{repA,repB},{Bcastl, Bcast2}}

* Qutcome of one execution might not reveal all the dependencies
— Run the failure scenario, one of two things will happen
» A new execution path will be revealed
— Update the fault tree and rerun
» System fails and you have uncovered a fault tolerance bug

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 39

LDFI Process

4. REPEAT

1. Success Fail

Why? Solve

k.

Encode

3.CNF

2. Lineage

Figure 2. Overview of LDFL

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 40

I WAS TRYING To
FIGURE OUr WHY
MY BROWSER LUAS
ACTING WEIRD:

LDFI Process

TURNS OUT IT WASNT
THE BROWSER—THE

ISSUE. WAS WITH My

KEYBOARD DRIVER.

/

L

DEBUGGING 7HAT LED
ME TO A MYSTERIOUS

ERROR MESSAGE. FROM
A SYSTEM UTILITY...

)

ANYWAY, LONG STORY” SHORT,
L FOUND THE SWORD OF
MARTIN THE LARRIOR.

T THINK AT SOME
POINT THERE YOU
SWITCHED PUZ2LES.

i}

Figure 2. Overview of LDFL

ECE/CS 541: Computer System Analysis. Fall 2018.

Slide 41

Results

* Implemented at Netflix to find fault tolerance bugs

« Paper provide interesting details about the challenges they faced and how they
overcame them

— I do recommend reading the paper

« LDFI at Netflix covered the failure space after doing 200 experiments

— Number of possible scenarios in considered case study is 2%

* Revealed 11 new critical failures that could prevent a customer from loading
the initial Netflix homepage

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 42

Further Reading

» Systems are becoming large, distributed and complex
* QOur reliability process is not scalable to such systems

* So how do we build fault trees
— Let the computers do it — Use machine learning

 LIFT: Learning Fault Trees from Observational Data
— Meike Nauta et al.
— Appeared at QEST 2018
— Auvailable on the course website

« Use failure datasets to generate fault trees and use them for analysis

« Interesting project ideas!!!

ECE/CS 541: Computer System Analysis. Fall 2018. Slide 43

