ECE/CS 541 Computer System Analysis: Combinatorial Methods

Mohammad A. Noureddine

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Fall 2018

Learning Objectives

- Or what is this course about?
- At the start of the semester, you should have
 - Basic programming skills (C++, Python, etc.)
 - Basic understanding of probability theory (ECE313 or equivalent)
- At the end of the semester, you should be able to
 - Understand different system modeling approaches
 - Combinatorial methods, state-space methods, etc.
 - Understand different model analysis methods
 - Analytic/numeric methods, simulation
 - Understand the basics of discrete event simulation
 - Design simulation experiments and analyze their results
 - Gain hands-on experience with different modeling and analysis tools

Announcements and Reminders

- HW1 is out
 - Due on September 18, 2018 at the start of class
- Probability quiz on September 20, 2018
 - First 30 minutes of class
- Project Proposals due near the first week of October
 - List of possible projects and ideas on the website soon
- TA office hours: MW: 4:00 5:00 pm in CSL 231

Objectives for this Module

- Introduce combinatorial (non state-space) methods of modeling
- Develop and formulate models of system reliability
- Introduce different reliability formalisms
- Combinatorial models for improved testing research at Internet scale
 - Technique generated out of UC Santa Cruz and adopted by Netflix

Lecture Outline

- Reliability formalisms
 - Reliability block diagrams
 - Fault trees
 - Reliability graphs
- Case study
 - Automating Failure Testing Research at Internet Scale

Summary

A system comprises N components, where the component failure times are given by the random variables X_1, \ldots, X_N . The system fails at time S with distribution F_S if:

Condition	Distribution
All components fail	$F_S(t) = \prod_{i=1}^{N} F_{X_i}(t)$
One component fails	$F_S(t) = 1 - \prod_{i=1}^{N} (1 - F_{X_i}(t))$
k components fail, i.i.d	$F_S(t) = \sum_{i=k}^{N} {N \choose i} F_X(t)^i (1 - F_X(t))^{N-i}$
k components fail, general case	$F_S(t) = \sum_{g \in G_k} \left(\prod_{X \in g} F_X(t) \right) \left(\prod_{X \notin g} \left(1 - F_X(t) \right) \right)$

Reliability Formalisms

There are several popular graphical formalisms to express system reliability. The core of the solvers is the methods we have just examined.

In particular, we will examine

- Reliability Block Diagrams
- Fault Trees
- Reliability Graphs

There is nothing particularly special about these formalisms except their popularity. It is easy to implement these formalisms, or design your own, in a spreadsheet, for example.

Reliability Block Diagrams

- Blocks represent components.
- A system failure occurs if there is no path from source to sink.

Series:

System fails if any component fails.

Parallel:

System fails if all components fail.

k of *N*:

System fails if at least k of N components fail.

Example

A NASA satellite architecture under study is designed for high reliability. The major computer system components include the CPU system, the high-speed network for data collection and transmission, and the low-speed network for engineering and control. The satellite fails if any of the major systems fail.

There are 3 computers, and the computer system fails if 2 or more of the computers fail. Failure distribution of a computer is given by F_C .

There is a redundant (2) high-speed network, and the high-speed network system fails if both networks fail. The distribution of a high-speed network failure is given by F_H .

The low-speed network is arranged similarly, with a failure distribution of F_L .

$$F_S(t) = 1 - \left(1 - \sum_{i=2}^{3} {3 \choose i} F_C(t)^i (1 - F_C(t))^{3-i} \right) \left(1 - (F_H(t))^2\right) \left(1 - (F_L(t))^2\right)$$

Probability all three systems survive to t

$$F_S(t) = 1 - \underbrace{\left(1 - \sum_{i=2}^{3} {3 \choose i} F_C(t)^i (1 - F_C(t))^{3-i}\right) \left(1 - \underbrace{(F_H(t))^2}_{\text{min}}\right) \left(1 - \underbrace{(F_L(t))^2}_{\text{min}}\right)}_{\text{min}}$$

Probability low speed network survives to t

$$F_{S}(t) = 1 - \left(1 - \sum_{i=2}^{3} {3 \choose i} F_{C}(t)^{i} (1 - F_{C}(t))^{3-i} \right) \left(1 - (F_{H}(t))^{2}\right) \left(1 - (F_{L}(t))^{2}\right)$$
min

Probability both components of low speed network fail by t

$$F_S(t) = 1 - \left(1 - \sum_{i=2}^{3} {3 \choose i} F_C(t)^i (1 - F_C(t))^{3-i} \right) \left(1 - (F_H(t))^2\right) \left(1 - (F_L(t))^2\right)$$
min

Fault Trees

- Components are leaves in the tree, the system fails if the root is *true*.
- Explicit representation of system decomposition and dependency of system operation on subsystems
- Fault tree expresses *logical* conditions necessary for system failure

AND gates

true if all the components are true (fail).

OR gates

true if any of the components are true (fail).

k of N gates

true if at least *k* of the components are *true* (fail).

Fault Tree Example

- Consider the NASA example again
- How would we solve this fault tree?

Fault Trees - Further Analysis

Fault Trees - Further Analysis

• Explicit representation of system decomposition and dependency of system operation on subsystems

$$S_F = (C_1 \wedge C_2) \vee (C_1 \wedge C_3) \vee (C_2 \wedge C_3) \vee (H_1 \wedge H_2) \vee (L_1 \wedge L_2)$$

- Writing the tree in DNF gives us a sum (disjunction) of products (conjunctions)
 - Each product identifies sets of components, which when all of them fail,
 cause the system to fail
- We can convert any Boolean expression into its DNF
- We can further use the Boolean expressions to identify the minimum number of components needed for a system to fail

Reliability Graphs

- Reliability graphs are a more general way of representing complex interactions
 - RBDs and FTs general a special kind of graphs called "series-parallel" graphs
- The arcs (or edges) in the graph represent components and each has a failure distribution
 - A failure occurs if there is no path from the source to the destination
- We can represent series:

• We can represent parallel:

Reliability Graphs

- Reliability graphs can also capture more complex dependencies and interactions
- For example, consider a network that fails when there is no path from the source to the destination

Solving Reliability Graphs

How do we approach solving the reliability graph of the network?

• Brute Force:

- Enumerate all possible scenarios
- Check which ones lead to there not being a path
- Compute probability distribution accordingly
 - Use independence assumption

• "Smarter" approach:

 Link C seems to be important to understanding the network.

- Condition on the status of link C
- Use laws of probability

Solving Reliability Graphs

• By the law of total probability

$$P\left(S \leq t\right) = \underbrace{P\left(S \leq t \mid C \leq t\right)}_{F_{S \mid C \ fails}} \times \underbrace{P\left(C \leq t\right)}_{F_{C}(t)} + \underbrace{P\left(S \leq t \mid C > t\right)}_{F_{S \mid C \ up}} \times \underbrace{P(C > t)}_{(1 - F_{C}(t))}$$

- First, let's condition on link C being down
- The system becomes the series A D composed in parallel with the series B E

- Can be solved using the standard tools we have developed so far
 - Max of two min's

$$P(S \le t \mid C \le t) = \left[1 - (1 - F_A(t))(1 - F_D(t))\right] \left[1 - (1 - F_B(t))(1 - F_E(t))\right]$$
Series A – D

Series B – E

Solving Reliability Graphs

By the law of total probability

$$P\left(S \leq t\right) = \underbrace{P\left(S \leq t \mid C \leq t\right)}_{F_{S \mid C \ fails}} \times \underbrace{P\left(C \leq t\right)}_{F_{C}(t)} + \underbrace{\underbrace{P\left(S \leq t \mid C > t\right)}_{F_{S \mid C \ up}} \times \underbrace{P(C > t)}_{(1 - F_{C}(t))}}_{(1 - F_{C}(t))}$$

- Second, let's condition on link C being up
- The system becomes the series of two parallels

- Can be solved using the standard tools we have developed so far
 - Min of two max's

$$P\left(S \le t \mid C > t\right) = 1 - \left(1 - \underbrace{F_A(t)F_B(t)}\right) \left(1 - \underbrace{F_D(t)F_E(t)}\right)$$
Parallel A - B Parallel D - E

Conditioning Fault Trees

- In more general cases, fault trees can be used to represent systems where a component appears more than once in the fault
 - Relaxing the independence assumption that we made initially
- One approach to deal with such cases is to also use conditioning
- Given a fault tree for a system S and component C that appears more than once in the tree
 - Use the law of total probability again

$$F_S(t) = F_{S|C \text{ Fail}}(t)F_C(t) + F_{S|C \text{ up}}(t)(1 - F_C(t))$$

Example

- Component B appears under both branches of the following fault tree
- $P(S \le t \mid B \le t) = ?$
- Let's look at the formula for S: $S = (A \land B) \land (B \lor C)$
- If B is down (i.e., B = 1), we get

$$S = (A \land 1) \land (1 \lor C) = A \land 1 = A$$

- So we can know that $F_{S|B ext{ failed}}(t) = F_A(t)$
- If B is up (i.e., B = 0), we get

$$S = (A \land 0) \land (0 \lor C) = 0$$

• So we can know that $F_{S|B|_{\text{up}}}(t) = 0$

$$F_S(t) = F_B(t)F_A(t)$$

Example

$$F_S(t) = F_B(t)F_A(t)$$

- Component C is irrelevant, i.e., does not impact the reliability of the system
- We could see that from the expression for S:

$$S = (A \land B) \land (B \lor C)$$

$$= (A \land B \land B) \lor (A \land B \land C)$$

$$= (A \land B) \lor (A \land B \land C)$$

$$= (A \land B) \land (1 \lor C)$$

$$= (A \land B)$$

• <u>Sanity check</u>: Apply formula for max of two components

Reliability/Availability Tables

A system comprises N components. Reliability of component i at time t is given by $R_{Xi}(t)$, and the availability of component i at time t is given by $A_{Xi}(t)$.

Condition	System Reliability	System Availability
system fails if all components fail	$R_S(t) = 1 - \prod_{i=1}^{n} (1 - R_{Xi}(t))$	$A_{S}(t) = 1 - \prod_{i=1}^{n} (1 - A_{Xi}(t))$
system fails if one component fails	$R_S(t) = \prod_{i=1}^n R_{Xi}(t)$	$A_{S}(t) = \prod_{i=1}^{n} A_{Xi}(t)$
system fails if at least <i>k</i> components fail, identical distribution	$R_{S}(t) = \sum_{i=k}^{N} {N \choose i} (1 - R_{Xi}(t))^{i} R_{X}(t)^{N-i}$	$A_{S}(t) = \sum_{i=k}^{N} {N \choose i} (1 - A_{X}(t))^{i} A_{X}(t)^{N-i}$
system fails if at least k components fail, general case	$R_{S}(t) = \sum_{g \in G_{k}} \left(\prod_{X \in g} (1 - R_{X}(t)) \right) \left(\prod_{X \notin g} R_{X}(t) \right)$	$A_{S}(t) = \sum_{g \in G_{k}} \left(\prod_{X \in G} (1 - A_{X}(t)) \right) \left(\prod_{X \notin g} A_{X}(t) \right)$

Reliability Modeling Process

Combinatorial Methods in Practice

- "Automating Failure Testing Research at Internet Scale"
 - P. Alvaro, et al.
 - A collaboration between Netflix and UC Santa Cruz
 - Appeared in the 2016 ACM Symposium on Cloud Computing (SoCC'16)
- Based on a previous paper by the same author
 - "Lineage-Driven Fault Injection"
 - Appeared in the 2015 International Conference on Management of Data (SIGMOD'15)

Motivation

Motivation: Distributed Systems

- Imagine this kernel running several services in a distributed large scale date center
 - Netflix, Amazon, Google, Facebook, etc.
- Large scale systems must be built to tolerate a variety of hardware and software faults
 - Mainly use replication to provide fault tolerance
 - Both at the software and hardware level
 - Building a static fault tree for the entire data center is infeasible
 - Server get upgraded, scaled up, etc.
 - Complex routing protocols
 - Multiple Sources of failures
 - Building a fault tree for a piece of distributed software is even worse!

Motivation: Chaos Engineering

Chaos Engineering:

- "experimenting on a distributed system in order to build confidence in the system's capability to withstand turbulent conditions in production"
- Netflix's chaos monkey:
 - https://github.com/Netflix/chaosmonkey

- Use automated tools to provide end-to-end tests for business-critical assumptions about the system
 - Inject failures and observes the system's behavior and report
- "Confidence in the end-to-end behavior of the system is manufactured by experimenting with worst-case failure scenarios in the production, scaled-out system"

Chaos Engineering: How?

- But how do we choose which failures to inject?
 - Which hardware to fail?
 - Which links to fail?
 - Which software to crash?
- The combinatorial space of faults across a distributed system (the failure scenarios) grows exponentially in the number of potential faults
- Current approaches:
 - Random: Select a failure scenarios at random
 - Not good: Why?
 - Programmer-guided: Bring your developers together and use their intuition about the software they designed and implemented
 - Yeah, right?

Lineage Driven Fault Inject (LDFI)

- So far, we've been thinking about how our system might fail
 - How do we fail our system?
 - Building RBDs, fault trees, reliability graphs, etc.
- But we have a treasure trove of our system did not fail
 - i.e., how our system gave us "good outcomes"
- Transformation the question from "could a bad thing ever happen"
 - Use narrower "how did this good thing happen?"
- Answers can provide rich information about the different paths that a successful request can take within our system
 - Use the answers to prune out scenarios that do not really matter

LDFI

- Lineage Driven Fault Tolerance is based on two insights
 - Fault tolerance is redundancy
 - Fault tolerance is achieve if a system can provide alternative ways in which one can obtain the same outcome
 - If we had perfect information about all the possible ways in which a system can service a request, we can determine which faults it can tolerate and which it cannot
 - Usually we moved forward: start from an initial state and explore the space of possible executions
 - It would be more efficient for identifying fault tolerance bugs to work backwards
 - Start from a successful execution and move your way back
 - From effects to causes
 - What combination of fault could have prevented the good outcome

LDFI: How it works?

- Begin with a correct outcome and ask:
 - How did this outcome occur?
- Obtain a lineage graph
 - Captures all the computations and data the contributed to producing that good outcome
- Run this several time and it would reveal the implicit redundancy in your deployment
 - What are the alternative computation paths that are sufficient to produce a certain good outcome
- Now it becomes tractable to reason about important failures for that good outcome you are trying to achieve

Example

- Consider the following example:
 - "Good outcome" = all acknowledged writes are durably stored.
- Consider a write that was durably stored
 - Q: Why was that write durably stored?
 - A: because it is stored on two replicas: repA and repB.
- Keep going backwards
 - Q: Why was the write stored on repA
 - A: because the client issued one or more broadcast requests to store a write
- Identified 4 important events that contributed to the good outcome of a durable write

$$E \equiv \{RepA, RepB, Bcast1, Bcast1\}$$

Lineage Graph

- Backward reasoning brings us to a lineage graph for that durable write
- Space of possible failure scenarios is 2^E
 - But not all are interesting
 - Failing RepA and Bcast2 tells us nothing
- Random strategy cannot tell us that!
- Which failure scenarios are then interesting?
 - Build a fault tree

Figure 1. A simple lineage graph

Build the Fault Tree

- They don't actually build the fault tree
 - They build the equivalent *Conjunctive Normal Form* (CNF) expression

Min set of useful scenarios

- We can now obtain the minimal solution to the CNF formula that we generated
 - Use off-the-shelf SAT solvers
- We see that the only two scenarios that we care about are

```
\{\{repA, repB\}, \{Bcast1, Bcast2\}\}
```

- Outcome of one execution might not reveal all the dependencies
 - Run the failure scenario, one of two things will happen
 - A new execution path will be revealed
 - Update the fault tree and rerun
 - System fails and you have uncovered a fault tolerance bug

LDFI Process

Figure 2. Overview of LDFI.

LDFI Process

TURNS OUT IT WASN'T THE BROWSER—THE ISSUE WAS WITH MY KEYBOARD DRIVER.

DEBUGGING THAT LED ME TO A MYSTERIOUS ERROR MESSAGE FROM A SYSTEM UTILITY...

ANYWAY, LONG STORY SHORT, I FOUND THE SWORD OF MARTIN THE WARRIOR.

I THINK AT SOME
POINT THERE YOU
SWITCHED PUZZLES.

Results

- Implemented at Netflix to find fault tolerance bugs
- Paper provide interesting details about the challenges they faced and how they overcame them
 - I do recommend reading the paper
- LDFI at Netflix covered the failure space after doing 200 experiments
 - Number of possible scenarios in considered case study is 2¹⁰⁰
- Revealed 11 new critical failures that could prevent a customer from loading the initial Netflix homepage

Further Reading

- Systems are becoming large, distributed and complex
- Our reliability process is not scalable to such systems
- So how do we build fault trees
 - − Let the computers do it − Use machine learning
- LIFT: Learning Fault Trees from Observational Data
 - Meike Nauta et al.
 - Appeared at QEST 2018
 - Available on the course website
- Use failure datasets to generate fault trees and use them for analysis
- Interesting project ideas!!!