ECE/CS 541 Computer System Analysis: Introduction to Combinatorial Methods

Mohammad A. Noureddine

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Fall 2018

Learning Objectives

- Or what is this course about?
- At the start of the semester, you should have
 - Basic programming skills (C++, Python, etc.)
 - Basic understanding of probability theory (ECE313 or equivalent)
- At the end of the semester, you should be able to
 - Understand different system modeling approaches
 - Combinatorial methods, state-space methods, etc.
 - Understand different model analysis methods
 - Analytic/numeric methods, simulation
 - Understand the basics of discrete event simulation
 - Design simulation experiments and analyze their results
 - Gain hands-on experience with different modeling and analysis tools

Announcements and Reminders

- HW1 is out
 - Covers the probability review
 - Prepare you for the probability quiz
 - Due on September 18, 2018 at the start of class
- Probability quiz on September 20, 2018
 - First 30 minutes of class
- Project Proposals due near the first week of October
 - Start forming groups and thinking about your projects
 - Come to office hours for discussions
 - List of possible projects and ideas on the website soon
- TA office hours: MW: 4:00 5:00 pm in CSL 231

Objectives for this Module

- Introduce combinatorial (non state-space) methods of modeling
- Develop and formulate models of system reliability
- Introduce different reliability formalisms
- Combinatorial models for improved testing research at Internet scale
 - Technique generated out of UC Santa Cruz and adopted by Netflix

Lecture Outline

- Assumptions for combinatorial modeling
- Review definition of reliability
- Failure rate
- System reliability
 - Maximum
 - Minimum
 - -k of N
- Reliability formalisms
 - Reliability block diagrams
 - Fault trees

Introduction to Combinatorial Methods

• Combinatorial validation methods are the simplest kind of analytical/numerical techniques and can be used for reliability and availability modeling under certain assumptions.

• Assumption 1:

The system being studied is composed of several elementary units, called components.

• Assumption 2:

- The components of the system fail in a statistically independent manner. For availability analysis, they can be repaired independently.
- When these assumptions hold, simple formulas for reliability and availability exist.

Choosing Validation Techniques cont.

Criterion	Combinatorial	State-Space- Based	Simulation	Measurement
Stage	Any	Any	Any	Post-prototype
Time	Small	Medium	Medium	Varies
Tools	Formulae, tools	Languages & tools	Languages & tools	instrumentation
Accuracy	Low	Moderate	Moderate	high
Comparisons	Easy	Moderate	Moderate	Difficult
Cost	Low	Low/medium	Medium	High
Scalability	High	Low/medium	Medium	low

Reliability

- One key to building highly available systems is the use of reliable components and systems.
- Reliability:
 - The *reliability* of a system at time t(R(t)) is the probability that the system operation is proper throughout the interval [0,t].
- Probability theory and combinatorics can be directly applied to reliability models.
- Let *X* be a random variable representing the time to failure (TTF) of a component. The reliability of the component at time *t* is given by

$$R_X(t) = P(X > t) = 1 - P(X \le t) = 1 - F_X(t)$$

• Similarly, we can define *unreliability* at time *t* by

$$U_X(t) = P(X \le t) = F_X(t)$$

Failure Rate

What is the rate that a component fails at time t? This is the probability that a component that has not yet failed fails in the interval $(t, t + \Delta t)$, as $\Delta t \rightarrow 0$.

Note that we are not looking at $f_X(t)dt = P(X \in (t, t + \Delta t))$. Rather, we are seeking $P(X \in (t, t + \Delta t) \mid X > t)$

Failure Rate

What is the rate that a component fails at time t? This is the probability that a component that has not yet failed fails in the interval $(t, t + \Delta t)$, as $\Delta t \rightarrow 0$.

Note that we are not looking at $f_X(t)dt = P(X \in (t, t + \Delta t))$. Rather, we are seeking $P(X \in (t, t + \Delta t) \mid X > t)$

$$P(X \in (t, t + \Delta t) \mid X > t) = \frac{P(X \in (t, t + \Delta t), X > t)}{P(X > t)}$$

$$= \frac{P(X \in (t, t + \Delta t))}{1 - F_X(t)}$$

$$= \frac{f_X(t)dt}{1 - F_X(t)} \triangleq r_x(t)dt$$

$$r_x(t) = \frac{f_X(t)}{1 - F_X(t)} = \frac{f_X(t)}{R_X(t)}$$

 $r_X(t)$ is called the *failure rate* or *hazard rate*.

Typical Failure Rate

System Reliability

While R_X can give the reliability of a component, how do you compute the reliability of a system?

System failure can occur when one, all, or some of the components fail. If one makes the *independent failure assumption*, system failure can be computed quite simply. The independent failure assumption states that all component failures of a system are independent, i.e., the failure of one component does not cause another component to be more or less likely to fail.

Given this assumption, one can determine:

- 1) Minimum failure time of a set of components
- 2) Maximum failure time of a set of components
- 3) Probability that *k* of *N* components have failed at a particular time *t*.

Maximum of *n* Independent Failure Times

Let X_1, \ldots, X_n be independent component failure times. Suppose the system fails at time S if all the components fail.

Thus,
$$S = \max\{X_1, X_2, \dots, X_n\}$$

What is $F_s(t)$?

Maximum of *n* Independent Failure Times

Let X_1, \ldots, X_n be independent component failure times. Suppose the system fails at time S if all the components fail.

Thus,
$$S = \max\{X_1, X_2, \dots, X_n\}$$

What is $F_s(t)$?

$$F_{S}(t) = P\left(S \le t\right) = P\left(X_{1} \le t \land X_{2} \le t \land \dots \land X_{n} \le t\right)$$

$$= P\left(X_{1} \le t\right) \times P\left(X_{2} \le t\right) \times \dots \times P\left(X_{n} \le t\right)$$

$$= F_{X_{1}}(t)F_{X_{2}}(t) \dots F_{X_{n}}(t)$$

$$= \prod_{i=1}^{n} F_{X_{i}}(t)$$
By definition!

By independence!

Minimum of n Independent Component Failure Times

Let X_1, \ldots, X_n be independent component failure times. A system fails at time S if any of the components fail.

Thus, $S = \min\{X_1, ..., X_n\}$.

What is $F_S(t)$? Proof in Homework 1

$$F_S(t) = 1 - \prod_{i=1}^n (1 - F_X(t))$$

k of N

Let X_1, \ldots, X_n be component failure times that have identical distributions (i.e., $F_{X_1}(t) = F_{X_2}(t) = \ldots$).

- The system fails at time S if k of the N components fail

k of N

Let X_1, \ldots, X_n be component failure times that have identical distributions (i.e., $F_{X_1}(t) = F_{X_2}(t) = \ldots$).

- The system fails at time S if k of the N components fail

 $F_S(t) = P$ (at least k components failed by time t) = P (exactly k failed \vee exactly k+1 failed $\vee \dots$ exactly N failed) = P (exactly k failed) + P (exactly k+1 failed) + \dots + P (exactly N failed)

k of N

Let X_1, \ldots, X_n be component failure times that have identical distributions (i.e., $F_{X_1}(t) = F_{X_2}(t) = \ldots$).

- The system fails at time S if k of the N components fail

$$F_S(t) = P$$
 (at least k components failed by time t)
= P (exactly k failed \vee exactly $k+1$ failed $\vee \dots$ exactly N failed)
= P (exactly k failed) + P (exactly $k+1$ failed) + \dots + P (exactly N failed)

$$P ext{ (exactly } k ext{ failed)} = P (k ext{ failed and } N - k ext{ have not)}$$
$$= {N \choose k} F_X(t)^k (1 - F_X(t))^{N-k}$$

Thus,

$$F_S(t) = \sum_{i=k}^{N} {N \choose i} F_X(t)^i (1 - F_X(t))^{N-i}$$

k of N in General

For non-identical failure distributions, we must sum over all combinations of at least k failures.

Let G_k be the set of all subsets of $\{X_1, \ldots, X_N\}$ such that each element in G_k is a set of size at least k, i.e.,

$$G_k = \{g_i \subseteq \{X_1, \dots, X_N\} : |g_i| \ge k\}$$

k of N in General

For non-identical failure distributions, we must sum over all combinations of at least *k* failures.

Let G_k be the set of all subsets of $\{X_1, \ldots, X_N\}$ such that each element in G_k is a set of size at least k, i.e.,

$$G_k = \{g_i \subseteq \{X_1, \dots, X_N\} : |g_i| \ge k\}$$
All possible failure scenarios

k of N in General

For non-identical failure distributions, we must sum over all combinations of at least *k* failures.

Let G_k be the set of all subsets of $\{X_1, \ldots, X_N\}$ such that each element in G_k is a set of size at least k, i.e.,

$$G_k = \{g_i \subseteq \{X_1, \dots, X_N\} : |g_i| \ge k\}$$
All possible failure scenarios

Now F_S is given by

$$F_s(t) = \sum_{g \in G_k} \left(\prod_{X \in g} F_X(t) \right) \left(\prod_{X \notin g} (1 - F_X(t)) \right)$$

Component Building Blocks

- Assumption 1 tells us that the systems we consider are composed of components.
 - So we can think about them <u>hierarchically</u>
- Consider a computer system that fails if:
 - Both power supplies fail, or
 - Both memories fail, or
 - The CPU fails
- Let's reason about the problem using our previously seen techniques.
 - Look at every component on its own
 - Build their composition

Component Building Blocks

- The computer system problem is one of a minimums
 - The system will fail when the first of its three subsystems fail

Summary

A system comprises N components, where the component failure times are given by the random variables X_1, \ldots, X_N . The system fails at time S with distribution F_S if:

Condition	Distribution		
All components fail	$F_S(t) = \prod_{i=1}^{N} F_{X_i}(t)$		
One component fails	$F_S(t) = 1 - \prod_{i=1}^{N} (1 - F_{X_i}(t))$		
k components fail, i.i.d	$F_S(t) = \sum_{i=k}^{N} {N \choose i} F_X(t)^i (1 - F_X(t))^{N-i}$		
k components fail, general case	$F_S(t) = \sum_{g \in G_k} \left(\prod_{X \in g} F_X(t) \right) \left(\prod_{X \notin g} \left(1 - F_X(t) \right) \right)$		

Reliability Formalisms

There are several popular graphical formalisms to express system reliability. The core of the solvers is the methods we have just examined.

In particular, we will examine

- Reliability Block Diagrams
- Fault Trees
- Reliability Graphs

There is nothing particularly special about these formalisms except their popularity. It is easy to implement these formalisms, or design your own, in a spreadsheet, for example.

Reliability Block Diagrams

- Blocks represent components.
- A system failure occurs if there is no path from source to sink.

Series:

System fails if any component fails.

Parallel:

System fails if all components fail.

k of *N*:

System fails if at least k of N components fail.

