Combinatorial Modeling Methods
Introduction to Combinatorial Methods

• Combinatorial validation methods are the simplest kind of analytical/numerical techniques and can be used for reliability and availability modeling under certain assumptions.

• Assumptions are that component failures are independent, and for availability, repairs are independent.

• When these assumptions hold, simple formulas for reliability and availability exist.
Lecture Outline

• Review definition of reliability
• Failure rate
• System reliability
 – Maximum
 – Minimum
 – k of N
• Reliability formalisms
 – Reliability block diagrams
 – Fault trees
 – Reliability graphs
• Reliability modeling process
Reliability

- One key to building highly available systems is the use of reliable components and systems.
- Reliability: The *reliability* of a system at time t ($R(t)$) is the probability that the system operation is proper throughout the interval $[0,t]$.
- Probability theory and combinatorics can be directly applied to reliability models.
- Let X be a random variable representing the time to failure of a component. The *reliability* of the component at time t is given by
 \[R_X(t) = P[X > t] = 1 - P[X \leq t] = 1 - F_X(t). \]
 Also called the *survivor* function.
- Similarly, we can define *unreliability* at time t by
 \[U_X(t) = P[X \leq t] = F_X(t). \]
Failure Rate

What is the rate that a component fails at time t? This is the probability that a component that has not yet failed fails in the interval $(t, t + \Delta t)$ divided by Δt, as $\Delta t \to 0$.

Note that we are not looking at $P[X \in (t, t + \Delta t)] = f_X(t)$. Rather, we are seeking $P[X \in (t, t + \Delta t) | X > t]$.

$$P[X \in (t, t + \Delta t) | X > t] = \frac{P[X \in (t, t + \Delta t), X > t]}{P[X > t]} = \frac{P[X \in (t, t + \Delta t)]}{1 - F_X(t)}$$

Thinking in terms of rate

$$r_X(t) = \lim_{\Delta t \to 0} \frac{P[\in (t, t + \Delta t)]}{\Delta t} = \frac{f_X(t)}{1 - F_X(t)}$$

$r_X(t)$ is called the failure rate or hazard rate.
Typical Failure Rate

Break in Normal operation Wear out

$r_X(t)$

time t
System Reliability

While F_X can give the reliability of a component, how do you compute the reliability of a system?

System failure can occur when one, all, or some of the components fail. If one makes the *independent failure assumption*, system failure can be computed quite simply. The independent failure assumption states that all component failures of a system are independent, i.e., the failure of one component does not cause another component to be more or less likely to fail.

Given this assumption, one can determine:

1) Minimum failure time of a set of components
2) Maximum failure time of a set of components
3) Probability that k of N components have failed at a particular time t.
Example: Weibull Distribution

Weibull Distribution
- Often used to model lifetime data
- β called the shape parameter
- η is the scale parameter
- γ is the location parameter

$$f(t) = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta} \right)^{\beta-1} e^{-\left(\frac{t-\gamma}{\eta} \right)^{\beta}}$$
Example: Weibull Distribution

Weibull Distribution
• Impact of β
• Bathtub function constructed by piece-wise definition of Weibulls with different β
Example: Weibull Distribution

Weibull Distribution

- *Early Life*: (failure rate decreases with time)
- *Useful Life*: (failure rate approx. constant)
- *Wearout Life*: (failure rate increases with time)

Time (hours, miles, cycles, etc.)

Failure Rate (failures per unit time)
Example: Weibull Distribution

Weibull Distribution

\[
f(t) = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta} \right)^{\beta-1} e^{-\left(\frac{t-\gamma}{\eta} \right)^\beta}
\]

\[
F(t) = e^{-\left(\frac{t-\gamma}{\eta} \right)^\beta}
\]

\[
r_X(t) = \frac{f_X(t)}{F(t)} = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta} \right)^{\beta-1}
\]

Observe special case of \(\gamma = 0, \ \ \beta = 1 \) \(r_X(t) = \frac{1}{\eta} \)
Maximum of \(n \) Independent Failure Times

Let \(X_1, \ldots, X_n \) be independent component failure times. Suppose the system fails at time \(S \) if \(S \) is the earliest time at which all components are in the failed state.

Thus, \(S = \max\{X_1, \ldots, X_n\} \)

What is \(F_s(t) \)?

\[
F_s(t) = P[S \leq t] = P[X_1 \leq t \text{ AND } X_2 \leq t \text{ AND } \ldots \text{ AND } X_n \leq t]
= P[X_1 \leq t] P[X_2 \leq t] \ldots P[X_n \leq t] \quad \text{By independence}
= F_{X_1}(t) F_{X_2}(t) \ldots F_{X_n}(t) \quad \text{By definition}
= \prod_{i=1}^{n} F_{X_i}(t)
\]
Minimum of n Independent Component Failure Times

Let X_1, \ldots, X_n be independent component failure times. A system fails at time S if S is the earliest time at which any component is in the failed state.
Thus, $S = \min\{X_1, \ldots, X_n\}$.

What is $F_S(t)$?

$$F_S(t) = P[S \leq t] = P[X_1 \leq t \text{ OR } X_2 \leq t \text{ OR } \ldots \text{ OR } X_n \leq t]$$

Trick: If A_i is an event, and $\overline{A_i}$ is the set complement such that $A_i \cup \overline{A_i} = \Omega$ and $A_i \cap \overline{A_i} = \emptyset$, then

$$P[A_1 \text{ OR } A_2 \text{ OR } \ldots \text{ OR } A_n]$$

$$= 1 - P[\overline{A_1} \text{ AND } \overline{A_2} \text{ AND } \ldots \text{ AND } \overline{A_n}]$$

This is an application of the law of total probability (LOTP).
Minimum cont.

\[F_s(t) = P[X_1 \leq t \text{ OR } X_2 \leq t \text{ OR } \ldots \text{ OR } X_n \leq t] \]

\[= 1 - P[X_1 > t \text{ AND } X_2 > t \text{ AND } \ldots \text{ AND } X_n > t] \quad \text{By trick} \]

\[= 1 - P[X_1 > t] P[X_2 > t] \ldots P[X_n > t] \quad \text{By independence} \]

\[= 1 - (1 - P[X_1 \leq t])(1 - P[X_2 \leq t]) \ldots (1 - P[X_n \leq t]) \quad \text{By LOTP} \]

\[= 1 - \prod_{i=1}^{n} (1 - F_{X_i}(t)) \]
k of N

Let X_1, \ldots, X_n be component failure times that have identical distributions (i.e., $F_{X_1}(t) = F_{X_2}(t) = \ldots$). The system fails at time S if S is the earliest time at which any k of the N components are in the failed state.

$$F_S(t) = P[\text{at least } k \text{ components failed by time } t]$$

$$= P[\text{ exactly } k \text{ failed OR exactly } k + 1 \text{ failed OR } \ldots \text{ OR exactly } N \text{ failed}]$$

$$= P[\text{ exactly } k \text{ failed}] + P[\text{ exactly } k + 1 \text{ failed}] + \ldots + P[\text{ exactly } N \text{ failed}]$$

What is $P[\text{ exactly } k \text{ failed}]$?

$$= P[k \text{ failed and } (N - k) \text{ have not}]$$

$$= \binom{N}{k} F_X(t)^k (1 - F_X(t))^{N-k}$$

where $F_X(t)$ is the failure distribution of each component.

Thus, $F_S(t) = \sum_{i=k}^{N} \binom{N}{i} F_X(t)^i (1 - F_X(t))^{N-i}$

- by independence and axiom of probability.
k of N in General

For non-identical failure distributions, we must sum over all combinations of at least k failures.

Let G_k be the set of all subsets of $\{X_1, \ldots, X_N\}$ such that each element in G_k is a set of size at least k, i.e.,

$$G_k = \{g_i \subseteq \{X_1, \ldots, X_N\} : |g_i| \geq k\}.$$

The set G_k represents all the possible failure scenarios.

Now F_S is given by

$$F_S(t) = \sum_{g \in G_k} \left(\prod_{X \in g} F_X(t) \right) \left(\prod_{X \notin g} (1 - F_X(t)) \right)$$
Component Building Blocks

Complex systems can be analyzed hierarchically.

Example: A computer fails if both power supplies fail or both memories fail or the CPU fails.

System problem is one of a minimum: the system fails when the first of three subsystems fails…proper formulation is

- **Power supply subsystem** is a maximum: both must fail
- **Memory subsystem** is a maximum: both must fail

\[
F_S(t) = 1 - (1 - F_{P1}(t)F_{P2}(t)) (1 - F_{M1}(t)F_{M2}(t)) (1 - F_C(t))
\]

Probability at least 1 power source is up at \(t \)

Probability all 3 subsystems are up at \(t \)
Summary

A system comprises N components, where the component failure times are given by the random variables X_1, \ldots, X_N. The system fails at time S with distribution F_S if:

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Distribution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>all components fail</td>
<td>$F_S(t) = \prod_{i=1}^{N} F_{X_i}(t)$</td>
</tr>
<tr>
<td>one component fails</td>
<td>$F_S(t) = 1 - \prod_{i=1}^{N} \left(1 - F_{X_i}(t)\right)$</td>
</tr>
<tr>
<td>k components fail, identical distributions</td>
<td>$F_S(t) = \sum_{i=k}^{N} \binom{N}{i} F_{X_i}(t)^i \left(1 - F_{X_i}(t)\right)^{N-i}$</td>
</tr>
<tr>
<td>k components fail, general case</td>
<td>$F_S(t) = \sum_{g \in G_k} \left(\prod_{X \in g} F_{X}(t)\right) \left(\prod_{X \notin g} \left(1 - F_{X}(t)\right)\right)$</td>
</tr>
</tbody>
</table>