ECE 536
Integrated Optics and Optoelectronics

TuTh 11:00-12:20, 3020 ECEB
Professor John Dallesasse
2114 Micro and Nanotechnology Laboratory
Tel: (217) 333-8416
E-mail: jdallesa@illinois.edu
Office Hours: Tuesday 1:00-2:00 pm
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEB 19:</td>
<td>Waveguiding in Material With Gain or Loss, Gain-Guided and Index-Guided Lasers</td>
</tr>
<tr>
<td>FEB 21:</td>
<td>Quantum Well Lasers, Scaling Laws, Semiconductor Optical Amplifiers</td>
</tr>
<tr>
<td>FEB 26:</td>
<td>Exam I</td>
</tr>
<tr>
<td>FEB 28:</td>
<td>Light-Emitting Transistor and Transistor Laser (Tentative)</td>
</tr>
<tr>
<td>MAR 5:</td>
<td>Strain Effects on Band Structures, Strained Quantum Well Lasers</td>
</tr>
<tr>
<td>MAR 7:</td>
<td>Strained Quantum Dot Lasers, Direct Modulation of Semiconductor Lasers</td>
</tr>
<tr>
<td>MAR 12:</td>
<td>Distributed Feedback Structures, Distributed Feedback Lasers</td>
</tr>
<tr>
<td>MAR 14:</td>
<td>VCSELs</td>
</tr>
<tr>
<td>MAR 19/21: Spring Break</td>
<td></td>
</tr>
<tr>
<td>MAR 26:</td>
<td>Chirped Gratings, Tunable Lasers</td>
</tr>
<tr>
<td>MAR 28:</td>
<td>Coupled Mode Theory, Waveguide Couplers, MMIs, AWGs</td>
</tr>
</tbody>
</table>

Subject to Change
Today’s Discussion

- Quantum Well Lasers and Scaling Laws
- Assignments
- Topics for Next Lecture
Quantum Well Lasers and Scaling Laws
Zero-Temperature Gain Spectrum

At $T = 0K$: $f_c(E) = \begin{cases} \frac{1}{2} & E < F_c \\ 0 & E > F_c \end{cases}$

Electron Concentration:

$$n = \frac{m^*_e}{\pi \hbar^2 L_z} \sum_{n \text{ occupied subbands}} (F_c - E_{en})$$

For Single Occupied State:

$$n = \frac{m^*_e}{\pi \hbar^2 L_z} (F_c - E_{e1}) \quad \text{and} \quad p = \frac{m^*_h}{\pi \hbar^2 L_z} (E_{h1} - F_v)$$

For the case where $n \sim p$, if $m^*_h > m^*_e$ then:

$$(F_c - E_{e1}) > (E_{h1} - F_v)$$

Gain:

$$g(\hbar \omega) = \begin{cases} g_{\text{max}} & E_{h1} < \hbar \omega < E_g + F_c - F_v \\ -g_{\text{max}} \sum_{n=m} H(\hbar \omega - E_{hm}) & \text{otherwise} \end{cases}$$

i.e. sum over all bands for which $F_c > E_{en}$

Quasi-Fermi level is further into the conduction band.
Finite Temperature Gain Spectrum

Define \(n_c = \frac{m_e^* k_B T}{\pi \hbar^2 L_z} \) and \(n_v = \frac{m_h^* k_B T}{\pi \hbar^2 L_z} \)

Electron Concentration:
\[
n = \sum_{n=1}^{\infty} \int_0^{\infty} \rho_e^{2D} (E) f_c^n (E) dE = \sum_{n=1}^{\infty} n_c \ln \left[1 + e^{(F_c - E_{en})/k_B T} \right]
\]

Hole Concentration:
\[
p = \sum_{m=1}^{\infty} n_v \ln \left[1 + e^{(E_{hm} - F_v)/k_B T} \right]
\]

Sum over both hh and lh bands

Gain Spectrum (single subband):
\[
g(h\omega) = g_{\max} \left[f_c (\hbar\omega - E_{h1}^{e1}(0)) - f_v (\hbar\omega - E_{h1}^{c1}(0)) \right]
\]

Peak Gain:
\[
g_p = g_{\max} \left[f_c (\hbar\omega = E_{h1}^{e1}) - f_v (\hbar\omega = E_{h1}^{c1}) \right]
\]

where \(f_c (\hbar\omega = E_{h1}^{e1}) = \frac{1}{1 + e^{(E_{e1} - F_c)/k_B T}} \)

and \(f_v (\hbar\omega = E_{h1}^{c1}) = \frac{1}{1 + e^{(E_{h1} - F_v)/k_B T}} \)
For one occupied conduction and valence level, redefine:

\[n_c \equiv \frac{m_e^* k_B T}{\pi \hbar^2 L_z} \sum_{n=1}^{\infty} e^{(E_{e1}-E_{en})/k_BT} \quad \text{and} \quad n_v \equiv \frac{m_h^* k_B T}{\pi \hbar^2 L_z} \sum_{n=1}^{\infty} e^{(E_{h1}-E_{hn})/k_BT} \]

Then, we can approximate the occupation probabilities:

\[f_c(\hbar \omega = E_{h1}) \approx 1 - e^{-n_c/n_c} \]
\[f_v(\hbar \omega = E_{h1}) \approx e^{-p/n_v} \]

The peak gain as a function of \(n \) is:

\[g_p = g_{\max} \left(f_c - f_v \right) = g_{\max} \left[1 - e^{-n_c/n_c} - e^{-p/n_v} \right] \]

Define \(R \equiv \frac{m_h^*}{m_e} \approx \frac{n_v}{n_c} \), then we get:

\[g_p = g_{\max} \left[1 - e^{-n_c/n_c} - e^{-p/(Rn_c)} \right] \]

Transparency occurs where \(g_p = 0 \):

\[e^{-n_c/n_c} + e^{-p/(Rn_c)} = 1 \]
Fermi Levels and Gain Versus n

- A plot of f_c and f_v versus n can be used to find the transparency current density

\[g_p = g_{\text{max}} (f_c - f_v) \]

\[\text{If } f_c = f_v \text{ then } g_p = 0 \]

- Peak gain versus carrier concentration
The total current density can be expressed:

\[J = J_{rad} + J_{Aug} + J_{leak} \]

for a carrier concentration \(n \):

\[J_{rad} = qL_z R_{sp} (n) \quad \Rightarrow \quad R_{sp} (n) \approx B n^2 \]

\[J_{Aug} = qL_z R_{Aug} (n) \quad \Rightarrow \quad R_{Aug} (n) \approx C n^3 \]

A common empirical formula for the peak gain as a function of current density is given by:

\[g_p (J) = g_0 \left[1 + \ln \frac{J}{J_0} \right] = g_0 \ln \frac{J}{J_{tr}} \]

Note: the QW is transparent at \(J = J_{tr} = e^{-1} \cdot J_0 \).

Note: \(J = \eta J_{applied} \) where \(\eta \equiv \) injection efficiency or fraction of applied current captured by the QW. So, \(J_{applied} = J_0 / \eta e \).

From the Auger and radiative terms, \(J \propto n^\beta \), where \(\beta \) is typically between 2 and 3:

\[g_p (n) = g_0 \left[1 + \ln \frac{n^\beta}{n_0^\beta} \right] = g_0 \left[1 + \beta \ln \frac{n}{n_0} \right] = g_0 \beta \left[\frac{1}{\beta} + \ln \frac{n}{n_0} \right] = g_0 \beta \ln \frac{n}{n_{tr}} \]
Scaling Laws: Gain for SQW and MQW Structures

Empirical Formula for Peak Gain - Current Density Relation:

\[g_w = g_0 \left[\ln \left(\frac{J_w}{J_0} \right) + 1 \right] \]

where

\[J_w = \eta J_{\text{applied}} \equiv \text{injected current density for a SQW (single quantum well)} \]

\[g_w \equiv \text{peak gain coefficient for a SQW, } g_w \propto L_z^{-1} \]

Transparency Current Density:

\[J_w = J_{\text{tr}} = J_0 e^{-1} \]

For a MQW Structure, the Modal Gain at Threshold is:

\[G_{\text{th}} = n_w \Gamma_w g_w = \alpha_{\text{tot}} = \alpha_i + \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right) \]

\[n_w : \# \text{ of wells; } \Gamma_w = \Gamma_{\text{op}} \frac{L_z}{W_{\text{mode}}} : \text{confinement factor per well} \]

General Expression, Modal Gain for a SQW:

\[G = \Gamma_w g_w = \Gamma_w g_{\text{max}} \left[f_c \left(\frac{\hbar \omega}{E_{h1}^e (0)} \right) - f_v \left(\frac{\hbar \omega}{E_{h1}^e (0)} \right) \right] = \frac{\Gamma_{\text{op}} L_z}{W_{\text{mode}}} g_{\text{max}} \]

Note: \[g_{\text{max}} = C_0 \left| \hat{e} \cdot \mathbf{M}_{\text{ch}} \right|^2 \frac{m_r^*}{\pi \hbar^2 L_z} \delta_{nm} \] and for a MQW: \[G = n_w \Gamma_w g_w \]
Threshold Current Density

Injected Current Density per QW at Threshold: \(J_w = \frac{\eta J_{th}}{n_w} \)

Each QW has gain: \(g_0 \left[\ln \left(\frac{J_w}{J_0} \right) + 1 \right] \), so **Peak Gain for MQW**:

\[
\frac{n_w g_w}{n_w J_0} = n_w g_0 \left[\ln \left(\frac{J_w}{J_0} \right) + 1 \right] = n_w g_0 \ln \left(\frac{n_w J_w}{n_w J_0} \right) + 1
\]

Relationship Between \(J_{th} \) and Cavity Length:

\[
\left(\frac{n_w J_w}{n_w J_0} \right) = e^{(n_w g_0 - 1)} \quad \Rightarrow \quad \eta J_{th} = n_w J_w = n_w J_0 \exp \left[\left(\frac{g_w}{g_0} \right) - 1 \right]
\]

\[
J_{th} = \frac{n_w J_0}{\eta} \exp \left[\left(\frac{g_w}{g_0} \right) - 1 \right]. \quad \text{Note: } n_w \Gamma_w g_w = \alpha_{tot} \quad \text{so:}
\]

Gain = Loss

\[
J_{th} = \left(\frac{n_w J_0}{\eta} \right) \exp \left[\frac{\alpha_{tot}}{n_w \Gamma_w g_0} - 1 \right]
\]

\[
\ln J_{th} = \ln \left(\frac{n_w J_0}{\eta} \right) + \frac{1}{n_w \Gamma_w g_0} \left(\alpha_i + \frac{1}{2L} \ln \frac{1}{R_1 R_2} \right) - 1
\]

- Offset mostly increases with \(n_w \)
- Slope proportional to \(1/n_w \)

\(n_w J_w = \text{total injected current} \)
\(n_w J_0 e^{-1} = \text{total injected current for transparency} \)
Cavity Length to Minimize Threshold Current

\[
\ln J_{th} = \ln \left(\frac{n_w J_0}{\eta} \right) + \frac{1}{n_w \Gamma_w g_0} \left(\alpha_i + \frac{1}{2L} \ln \frac{1}{R_1 R_2} \right) - 1
\]

\[
= \ln \left(\frac{n_w J_0}{\eta} \right) + \frac{\alpha_i}{n_w \Gamma_w g_0} + \frac{L_{opt}}{L} - 1
\]

Note: \(\ln J_{th} \) varies linearly with \(L^{-1} \) and there is an optimal cavity length \(L_{opt} \) that minimizes the threshold current:

\[
L_{opt} \equiv \frac{1}{2} \frac{1}{n_w \Gamma_w g_0} \ln \left(\frac{1}{R_1 R_2} \right)
\]

Threshold Current from Threshold Current Density:

\[
I_{th} = \frac{w L n_w J_0}{\eta} \exp \left[\frac{\alpha_i}{n_w \Gamma_w g_0} + \frac{L_{opt}}{L} - 1 \right] = \text{const} \cdot L e^{\frac{L_{opt}}{L}}
\]

Optimum Cavity Length and Minimum Threshold Current:

Using \(\frac{\partial}{\partial L} I_{th} = 0 = I_{th} \left(\frac{1}{L} - \frac{L_{opt}}{L^2} \right) \) shows \(L = L_{opt} \) minimizes \(I_{th} \).

\[
I_{th}^{\text{min}} = \frac{w L_{opt} n_w J_0}{\eta} \exp \left[\frac{\alpha_i}{n_w \Gamma_w g_0} \right]
\]
You can't simultaneously optimize the cavity length and the number of wells to minimize I_{th} except for the non-physical condition $\alpha_i = 0$, $\alpha_m = \text{integer} \cdot \Gamma_w g_0$.

$$I_{th} = \frac{wL \eta N_w J_0}{\eta} \exp \left[\frac{\alpha_{tot}}{n_w \Gamma_w g_0} - 1 \right] = \text{const} \cdot n_w e^{\frac{\alpha_{tot}}{n_w \Gamma_w g_0}}$$

Optimum # of QWs and Minimum Threshold Current:

Define: $n_{opt} = \frac{\alpha_{tot}}{\Gamma_w g_0}$ so that $I_{th} = \text{const} \cdot n_w e^{\frac{n_{opt}}{n_w}}$

Similar calculation: $\frac{\partial}{\partial n_w} I_{th} = 0 = I_{th} \left(\frac{1}{n_w} - \frac{n_{opt}}{n_w^2} \right)$:

gives us minimum threshold current for $n_w = n_{opt}$

$$n_{opt} = \frac{\alpha_{tot}}{\Gamma_w g_0} = \frac{1}{\Gamma_w g_0} \left[\alpha_i + \frac{1}{2L} \ln \frac{1}{R_1 R_2} \right]$$

But, in practice, n_w is an integer.

Assumes no coupling effects between well.

Note: $I_{th}^{\min} = \frac{wL n_{opt} J_0}{\eta}$

Can't simultaneously optimize:

If $L = L_{opt}$, then

$$n_w \equiv \frac{\alpha_m}{\Gamma_w g_0} \neq n_{opt}$$

unless $\alpha_i = 0$ (non-physical).
Representative Data

(a)

Threshold current density (A/cm²) vs. \(L_c (\mu m) \)

- GaAs(7 nm)/Al\(_{0.22}\)Ga\(_{0.78}\)As (5 nm)

\[\frac{1}{L_c} \ell n R^{-1} (cm^{-1}) \]

(b)

Threshold current (mA) vs. Cavity length (\(\mu m \))

- Stripe width ~ 4 \(\mu m \)

\[n_w = 3, 2, 1 \]

\(n\)-GaAs
Strain Effects: Band Structure and Quantum Well Laser Effects
• Biaxial Compression (Compressive Strain): Strained material has a larger lattice constant, resulting in compression in the plane of the wafer and tension in the direction perpendicular to the surface.

• Biaxial Tension (Tensile Strain): Strained material has a smaller lattice constant, resulting in tension in the plane of the wafer and compression in the direction perpendicular to the surface.

• Critical layer thickness: Thickness beyond which dislocations form to accommodate mismatch.
A Few Key Points about Strain Effects on Band Structure

- **Section 4.5**
- Strain modifies the band structure of the valence band, in some cases significantly
 - Band energy and carrier effective mass can both change (notably, \(\text{hh} \) becomes lighter and \(\text{lh} \) becomes heavier in \(k_x \))
 - Degeneracy of \(\text{hh}/\text{lh} \) bands broken
- Strain can change the laser threshold current
- Strain can change the polarization of the emitted light (or polarization dependent gain for an amplifier)
- Reduction in threshold carrier density can reduce non-radiative processes such as Auger recombination
- \(\text{InGaAs/InGaAsP/InAlAs/InP} \)
- \(\text{InGaAs/AlGaAs/GaAs} \)
- \(\text{InGaAs/InGaAsP/GaAs} \)
Assignments
Assignments

• Reading
 – Physics of Photonic Devices (S.L. Chuang)
 • Thurs 2/21: § 10.3 in Chuang and § 8.2.5 in C&C
 • Tues 2/26: § ’s 4.5 & 10.4
 • Thurs 2/28: § ’s 4.5 & 10.4
 • Tues 2/5: § ’s 12.1, 12.2, posted notes on TL
 • Thurs 3/7: § ’s 12.1, 12.2
 • Tues 3/12: § ’s 8.5, 11.1
 • Thurs 3/14: § ’s 11.2
 – Diode Lasers and Photonic Integrated Circuits (Coldren & Corzine)
 • § 8.2.5
 • Appendix 1, 2, 3, 9 (Supplemental)
• Finalize Partner Selection and Preference Sheet
Topics for Next Lecture
Agenda for Thursday, 3/7

• Transfer Matrix Method
• Distributed Feedback Structures
Thank You for Listening!
Course Purpose & Objectives
Course Purpose

- Cover the theory and design of semiconductor devices used in optical communication systems and electronic-photonic integrated circuits
Course Objectives

• Discuss, at a graduate level, key topics in semiconductor physics
• Discuss, at a graduate level, key topics in electromagnetics as applied to photonic devices
• Provide an understanding of active photonic devices used in optical communication systems and photonic integrated circuits
• Provide an understanding of passive photonic devices used in optical communication systems and photonic integrated circuits
Overlap With ECE/PHYS Courses

- Quantum Mechanics (PHYS 486/487)
- Semiconductor Physics (ECE 488)
- E&M (ECE 452/520)

ECE 536
Course Schedule
Tentative Schedule [1]

<table>
<thead>
<tr>
<th>JAN 15: Course Overview, Intro to Optoelectronics & Communication, Maxwell’s Equations</th>
<th>JAN 17: Semiconductor Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN 22: Generation and Recombination in Semiconductors</td>
<td>JAN 24: Basic Quantum Mechanics and Square Wells</td>
</tr>
<tr>
<td>JAN 29: Time-Dependent Perturbation Theory, Fermi’s Golden Rule</td>
<td>JAN 31: Symmetric Optical Waveguides, Dispersion Relations</td>
</tr>
<tr>
<td>FEB 5: Optical Transitions Using Fermi’s Golden Rule</td>
<td>FEB 7: Interband Absorption and Gain of Bulk Semiconductors and Quantum Wells</td>
</tr>
</tbody>
</table>

Subject to Change
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEB 19</td>
<td>Waveguiding in Material With Gain or Loss, Gain-Guided</td>
<td>FEB 21</td>
<td>Quantum Well Lasers, Scaling Laws, Semiconductor Optical Amplifiers</td>
</tr>
<tr>
<td></td>
<td>and Index-Guided Lasers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEB 26</td>
<td>Exam I</td>
<td>FEB 28</td>
<td>Light-Emitting Transistor and Transistor Laser (Tentative)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR 5</td>
<td>Strain Effects on Band Structures, Strained Quantum Well Lasers</td>
<td>MAR 7</td>
<td>Strained Quantum Dot Lasers, Direct Modulation of Semiconductor Lasers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR 12</td>
<td>Distributed Feedback Structures, Distributed Feedback Lasers</td>
<td>MAR 14</td>
<td>VCSELs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAR 19/21: Spring Break</td>
</tr>
<tr>
<td>MAR 26</td>
<td>Chirped Gratings, Tunable Lasers</td>
<td>MAR 28</td>
<td>Coupled Mode Theory, Waveguide Couplers, MMIs, AWGs</td>
</tr>
</tbody>
</table>

Subject to Change
Tentative Schedule [3]

<table>
<thead>
<tr>
<th>APR 2:</th>
<th>APR 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reciprocal and Non-Reciprocal Polarization Rotators</td>
<td>Franz-Keldysh and Exciton Effects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APR 9:</th>
<th>APR 11:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum-Confined Stark Effect, EA Modulators, EMLs, Mach-Zehnder Modulators</td>
<td>Photoconductors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APR 16:</th>
<th>APR 18:</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-n junction Photodiodes, p-i-n Photodiodes</td>
<td>Avalanche Photodiodes, Intersubband Quantum-Well Photodetectors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APR 23:</th>
<th>APR 25:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>April 30:</th>
<th>MAY 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam II</td>
<td>Reading Day (no class)</td>
</tr>
<tr>
<td></td>
<td>Final Exam: Class Presentations</td>
</tr>
</tbody>
</table>
Grading, Expectations, and Policies
Determination of Grade

• Homework: 20%
• Exam I: 25%
• Exam II: 25%
• Class Participation &
 Term Project Presentation: 15%
• Term Project Report: 15%
Homework

• Assigned per posted class schedule on Thursdays, due 1 week later

• TA is Fu-Chen Hsiao, 3211 MNTL
 – Office hours Wednesday from 10-11am, 4034 ECEB
 – TA: good first contact for questions on homework

• Do not copy solutions from others in class or from other sources
Term Project

• Collaborative presentation: teams of 2
• Individual paper
• Details and a list of topics will be provided in early February
Expectations

• Diligence
 – Attend class & participate

• Honesty
 – No cheating on exams or homework
 – Original work on term project
 – Accurate/legitimate representation of any issues affecting homework/exams/project

• Mutual Respect

• Maturity
 – Graduate-level class
Policies

• Where applicable, general university policies on academic affairs will be used

• Any issues involving homework, exams, semester project, etc. should be disclosed and discussed as soon as the issue is known
Text Errata
Text Errata

• Text errata provided by Professor Chuang will be posted on the class website
 – I will include additional errata in the lecture slides

• Handout: inside book cover

• Additional errata:
 – Equation 3.2.18 “=“ should be “>”
 • $|z| > \frac{L}{2}$
 – Equation 3.2.23 “=“ should be “<“
 • $|z| < \frac{L}{2}$
 – Equation 3.2.23: “L/2” not “L2” in exponent
1) Equation 1.3.1 should be:
\[a(A_x B_{1-x} C) = xa(AC) + (1 - x)a(BC) \]
where \(a(AC) \) is the lattice constant of the binary compound AC and...

2) Equation 1.3.2 should be:
\[E_g(A_x B_{1-x} C) = xE_g(AC) + (1 - x)E_g(BC) - bx(1 - x) \]

3) Other printing errors in book - see errata posted on website
• Equation 3.6.15 should be:

\[a_m^{(0)}(t = 0) = 0 \quad \text{not} \quad a_m^{(0)}(t) = 0 \]
Correction: Typo in Book

• Pg. 41, top of page, between equations 2.3.3 and 2.3.4
• Current Text is: “0 = Bn_o p_o = e_r”
• Should Be: “0 = Bn_o p_o - e_r”

The consequence of this is that $Bn_o p_o = e_r$ in equilibrium where there is no optical generation or electrical injection of carriers.
Threshold Current Density

Injected Current Density per QW at Threshold: \(I_w = \frac{\eta J_{th}}{n_w} \)

Each QW has gain: \(g_0 \left[\ln \left(\frac{I_w}{I_0} \right) + 1 \right] \), so **Peak Gain for MQW**:

\[
n_w g_w = n_w g_0 \left[\ln \left(\frac{I_w}{I_0} \right) + 1 \right] = n_w g_0 \left[\ln \left(\frac{n_w J_w}{n_w J_0} \right) + 1 \right]
\]

Relationship Between \(J_{th} \) and Cavity Length:

\{ **Typo in book** - p 444, should be: substitute 10.3.29 into 10.3.30\}

\[
\left(\frac{n_w J_w}{n_w J_0} \right) = e^{\left(\frac{n_w g_w}{n_w g_0} \right) - 1} \Rightarrow \eta J_{th} = n_w J_w = n_w J_0 \exp \left[\left(\frac{g_w}{g_0} \right) - 1 \right]
\]

\[
J_{th} = \frac{n_w J_0}{\eta} \exp \left[\left(\frac{g_w}{g_0} \right) - 1 \right]. \quad \text{Note: } n_w \Gamma_w g_w = \alpha_{tot} \text{ so:}
\]

\[
\text{Gain} = \text{Loss}
\]

\[
J_{th} = \left(\frac{n_w J_0}{\eta} \right) \exp \left[\frac{\alpha_{tot}}{n_w \Gamma_w g_0} - 1 \right]
\]

\[
\ln J_{th} = \ln \left(\frac{n_w J_0}{\eta} \right) + \frac{1}{n_w \Gamma_w g_0} \left(\alpha_i + \frac{1}{2L} \ln \frac{1}{R_1 R_2} \right) - 1
\]

- Offset mostly increases with \(n_w \)
- Slope proportional to \(1/n_w \)

\[n_w J_w = \text{total injected current} \]
\[n_w J_0 e^{-1} = \text{total injected current for transparency} \]
All slides in this deck are copyright protected. ©2019 John Dallesasse, All Rights Reserved.

These slides or any portion thereof may not be reproduced, distributed, or transmitted in any form or by any means including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of John Dallesasse.