October 13, 2009

Solutions to Exam 1

1. Convergence. In each of the following four parts, you are asked a question about the convergence of a sequence of random variables. If you say yes, provide a proof and the limiting random variable. If you say no, disprove or provide a counterexample.
(a) Let A_{1}, A_{2}, \ldots be a sequence of independent events such that $\mathrm{P}\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$. Now define a sequence of random variables $X_{n}=\mathbb{1}_{A_{n}}, n=1,2, \ldots$. Does X_{n} converge in probability as $n \rightarrow \infty$?
Ans: We can guess that $X_{n} \xrightarrow{p .} 1$. To prove this, consider $\mathrm{P}\left\{\left|X_{n}-1\right| \geq \epsilon\right\}$. Clearly $\mathrm{P}\left\{\left|X_{n}-1\right| \geq\right.$ $\epsilon\}=0 \forall n$ if $\epsilon>1$, since $\left|X_{n}-1\right|$ cannot exceed 1 . Thus it remains to see if this probability converges to 0 for $0<\epsilon \leq 1$. For $0<\epsilon \leq 1$

$$
\mathrm{P}\left\{\left|X_{n}-1\right| \geq \epsilon\right\}=\mathrm{P}\left(A_{n}^{c}\right)=1-\mathrm{P}\left(A_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(b) Suppose $X_{n} \xrightarrow{\text { m.s. }} X$ as $n \rightarrow \infty$ and $\mathrm{E}\left[X_{n}^{4}\right]<\infty$ for all n. Does X_{n}^{2} necessarily converge in mean square as $n \rightarrow \infty$?
Ans: No. Consider $\Omega=[0,1]$ with the uniform probability measure, and let $X_{n}=n \mathbb{1}_{\left\{\omega \in\left[0,1 / n^{4}\right\}\right\}}$. Then $\mathrm{E}\left[X^{4}\right]=1<\infty$ for all n , and $X n \xrightarrow{\text { m.s. }} X$, with $X=0$ a.s., but $\mathrm{E}\left[X_{n}^{2} X_{n-1}^{2}\right]=n^{2}(n-1)^{2} / n^{4} \rightarrow$ $1 \neq \mathrm{E}\left[X^{2} X^{2}\right]=0$, Thus, by the Cauchy criterion, X_{n}^{2} does not converge in m.s. sense.
(c) Suppose $X \sim \operatorname{Unif}[-1,1]$ and $X_{n}=X^{n}$. Does X_{n} converge almost surely as $n \rightarrow \infty$?

Ans: Yes. $X_{n}(\omega)=X(\omega)^{n} \rightarrow 0$ for all ω except that for which $X(\omega)=1$ or $X(\omega)=-1$, which belong to set of measure 0 . Thus $X_{n} \xrightarrow{\text { a.s. }} 0$.
(d) Suppose $X_{n} \xrightarrow{d .} X$, and a_{n} is a deterministic sequence such that $a_{n} \rightarrow a$ as $n \rightarrow \infty$. Does $X_{n}+a_{n}$ necessarily converge in distribution as $n \rightarrow \infty$?
Ans: Yes. Using characteristic functions, we have $\mathrm{E}\left[e^{j u X_{n}}\right] \rightarrow \mathrm{E}\left[e^{j u X}\right]$ for all $u \in \mathbb{R}$. Thus

$$
\mathrm{E}\left[e^{j\left(X_{n}+a_{n}\right) u}\right]=e^{j a_{n} u} \mathrm{E}\left[e^{j X_{n} u}\right] \rightarrow e^{j a u} \mathrm{E}\left[e^{j X u}\right]=\mathrm{E}\left[e^{j(X+a) u}\right]
$$

which means that $X_{n}+a_{n} \xrightarrow{d} X+a$.
2. Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli random variables, with

$$
\mathrm{P}\left\{X_{n}=0\right\}=\frac{3}{4} \quad \text { and } \quad \mathrm{P}\left\{X_{n}=1\right\}=\frac{1}{4}
$$

Suppose $S_{n}=\sum_{i=1}^{n} X_{i}$.
(a) Find $M_{X}(\theta)$, the moment generating function of X_{n}.

Ans: $M_{X}(\theta)=\mathrm{E}\left[e^{\theta X_{n}}\right]=\frac{1}{4} e^{\theta}+\frac{3}{4}$.
(b) Use the Central Limit Theorem to find an approximation for $\mathrm{P}\left\{S_{100} \geq 50\right\}$ in terms of the $Q(\cdot)$ function.
Ans: $\mu=\mathrm{E}\left[X_{n}\right]=\frac{1}{4}$ and $\sigma^{2}=\operatorname{Var}\left(X_{n}\right)=\mathrm{E}\left[X_{n}^{2}\right]-\mu^{2}=\frac{1}{4}-\frac{1}{16}=\frac{3}{16}$. Thus, by the Central Limit Theorem, $\left(S_{100}-100 \mu\right) /(10 \sigma)$ is approximately $\mathcal{N}(0,1)$. Therefore,

$$
\mathrm{P}\left\{S_{100}>50\right\}=\mathrm{P}\left\{\frac{S_{100}-100 \mu}{10 \sigma}>\frac{50-n \mu}{10 \sigma}\right\} \approx Q\left(\frac{50-n \mu}{10 \sigma}\right)=Q\left(\frac{10}{\sqrt{3}}\right)
$$

(c) Now use the Chernoff Bound to show that

$$
\mathrm{P}\left\{S_{100} \geq 50\right\} \leq\left(\frac{4}{3}\right)^{-50}
$$

Ans: By the Chernoff Bound,

$$
\mathrm{P}\left\{S_{100} \geq 50\right\}=\mathrm{P}\left\{\frac{S_{100}}{100} \geq \frac{1}{2}\right\} \leq e^{-100 \ell(0.5)}
$$

where $\ell(0.5)$ is obtained by maximizing

$$
0.5 \theta-\ln M_{X}(\theta)=0.5 \theta-\ln \left(3+e^{\theta}\right)+\ln (4)
$$

Taking the derivative and setting it equal to zero, we obtain that the optimizing θ^{*} satisfies

$$
0.5=\frac{e^{\theta^{*}}}{3+e^{\theta^{*}}} \Longrightarrow \theta^{*}=\ln 3
$$

Thus $\ell(0.5)=0.5 \ln 3-\ln (3 / 2)=0.5 \ln 4-0.5 \ln 3$, and the upper bound follows.
3. (12 pts) Suppose X, Y have joint pdf

$$
f_{X, Y}(x, y)= \begin{cases}6 x & \text { if } x, y \geq 0 \text { and } x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $\mathrm{E}[X \mid Y]$.

Ans: $f_{X, Y}(x, y)=6 x \mathbb{1}_{\{0 \leq y \leq 1\}} \mathbb{1}_{\{0 \leq x \leq 1-y\}}$. Thus

$$
f_{y}(y)=\int_{0}^{1-y} 6 x d x \mathbb{1}_{\{0 \leq y \leq 1\}}=3(1-y)^{2} \mathbb{1}_{\{0 \leq y \leq 1\}}
$$

and for $0 \leq y \leq 1$,

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{y}(y)}=\frac{2 x}{(1-y)^{2}} \mathbb{1}_{\{0 \leq x \leq 1-y\}} .
$$

Therefore, for $0 \leq y \leq 1$,

$$
\mathrm{E}[X \mid Y=y]=\int_{0}^{1-y} x f_{X \mid Y}(x \mid y) d x=\frac{2}{3} \frac{(1-y)^{3}}{(1-y)^{2}}=\frac{2}{3}(1-y)
$$

and $\mathrm{E}[X \mid Y]=\frac{2}{3}(1-Y)$.
(b) Find the MSE achieved by $\mathrm{E}[X \mid Y]$, i.e. find the minimum MSE.

Ans: It is easy to see that $f_{x}(x)=6 x(1-x) \mathbb{1}_{\{0 \leq x \leq 1\}}$. Thus, the minimum MSE is given by

$$
\mathrm{E}\left[X^{2}\right]-\mathrm{E}\left[(\mathrm{E}[X \mid Y])^{2}\right]=\int_{0}^{1} 6 x^{3}(1-x) d x-\frac{4}{9} \int_{0}^{1} 3(1-y)^{4} d y=\frac{3}{10}-\frac{4}{15}=\frac{1}{30} .
$$

(c) Find $\hat{\mathrm{E}}[X \mid Y]$.

Ans: Since $\mathrm{E}[X \mid Y]$ is linear in $Y, \hat{\mathrm{E}}[X \mid Y]=\mathrm{E}[X \mid Y]$.
4. (14 pts) Suppose X, Y_{1}, Y_{2} are zero-mean jointly Gaussian with covariance matrix

$$
\operatorname{Cov}\left(\left[\begin{array}{l}
X \\
Y_{1} \\
Y_{2}
\end{array}\right]\right)=\left[\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

(a) Find $\mathrm{P}\left\{Y_{1}+Y_{2}-X \geq 10\right\}$ in terms of the $Q(\cdot)$ function.

Ans: Let $W=Y_{1}+Y_{2}-X$. Then W is Gaussian with $\mathrm{E}[W]=0$ and
$\operatorname{Var}(W)=\mathrm{E}\left[W^{2}\right]=\mathrm{E}\left[Y_{1}^{2}\right]+\mathrm{E}\left[Y_{1}^{2}\right]+\mathrm{E}\left[X^{2}\right]+2 \mathrm{E}\left[Y_{1} Y_{2}\right]-2 \mathrm{E}\left[X Y_{1}\right]-2 \mathrm{E}\left[X Y_{2}\right]=1+1+4+0+2+2=10$.
Thus $\mathrm{P}\left\{Y_{1}+Y_{2}-X \geq 10\right\}=Q(\sqrt{10})$.
(b) Find $\mathrm{E}\left[X \mid Y_{1}\right]$ and $\mathrm{E}\left[X \mid Y_{2}\right]$.

Ans: $\mathrm{E}\left[X \mid Y_{1}\right]=0+\operatorname{Cov}\left(X, Y_{1}\right) \operatorname{Cov}\left(Y_{1}\right)^{-1}(Y-0)=-Y_{1}$. Similarly, $\mathrm{E}\left[X \mid Y_{2}\right]=-Y_{2}$.
(c) Find $f_{X \mid Y_{1}, Y_{2}}\left(x \mid y_{1}, y_{2}\right)$.

Ans: We know that given $Y_{1}=y_{1}, Y_{2}=y_{2}, X$ is Gaussian with mean $E\left[X \mid Y_{1}=y_{1}, Y_{2}=y_{2}\right]$, and variance equal to $\operatorname{Cov}(e)$, with $e=X-E\left[X \mid Y_{1}, Y_{2}\right]$. Now, with $\underline{Y}=\left[Y_{1} Y_{2}\right]^{\top}$,

$$
E[X \mid \underline{Y}=\underline{y}]=0+\operatorname{Cov}(X, \underline{Y}) \operatorname{Cov}(\underline{Y})^{-1}[\underline{y}]=[-1-1] \underline{y}=-y_{1}-y_{2} .
$$

(Note: we could have concluded this from part (b) using linear innovations.) Similarly,

$$
\operatorname{Cov}(e)=\operatorname{Cov}(X)-\operatorname{Cov}(X, \underline{Y}) \operatorname{Cov}(\underline{Y})^{-1} \operatorname{Cov}(\underline{Y}, X)=4-[-1-1][-1-1]^{\top}=2
$$

Thus $f_{X \mid Y_{1}, Y_{2}}\left(x \mid y_{1}, y_{2}\right) \sim \mathcal{N}\left(-y_{1}-y_{2}, 2\right)$.
(d) Find $\mathrm{P}\left(\{X \geq 2\} \mid\left\{Y_{1}+Y_{2}=0\right\}\right)$ in terms of the $Q(\cdot)$ function.

Ans: The straightforward way to do this problem is to define $V=Y_{1}+Y_{2}$, note that X and V are jointly Gaussian, find the conditional distribution of X given V using the MMSE approach, and then compute the above probability. But based on the result of part (c), we can conclude that $f_{X \mid V}(x \mid v) \sim \mathcal{N}(-v, 2)$. Thus $\mathrm{P}\left(\{X \geq 2\} \mid\left\{Y_{1}+Y_{2}=0\right\}\right)=\mathrm{P}(\{X \geq 2\} \mid\{V=0\})=Q(\sqrt{2})$.
(e) Let $Z=Y_{1}^{2}+Y_{2}^{2}$. Find $\hat{\mathrm{E}}[X \mid Z]$.

Ans: Note that $\operatorname{Cov}(X, Z)=\mathrm{E}\left[X Y_{1}^{2}\right]+\mathrm{E}\left[X Y_{2}^{2}\right]=0$, since for $i=1,2$,

$$
\mathrm{E}\left[X Y_{i}^{2}\right]=\mathrm{E}\left[\mathrm{E}\left[X Y_{i}^{2} \mid Y_{i}\right]\right]=\mathrm{E}\left[Y_{i}^{2} \mathrm{E}\left[X \mid Y_{i}\right]\right]=-\mathrm{E}\left[Y_{i}^{3}\right]=0
$$

Thus

$$
\hat{\mathrm{E}}[X \mid Z]=\mathrm{E}[X]-0=0
$$

