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Solutions to Exam 1

1. Convergence. In each of the following four parts, you are asked a question about the convergence
of a sequence of random variables. If you say yes, provide a proof and the limiting random variable.
If you say no, disprove or provide a counterexample.

(a) Let A1, A2, . . . be a sequence of independent events such that P(An) → 1 as n →∞. Now de-
fine a sequence of random variables Xn = 11An , n = 1, 2, . . .. Does Xn converge in probability
as n →∞?
Ans: We can guess that Xn

p.→ 1. To prove this, consider P{|Xn − 1| ≥ ε}. Clearly P{|Xn − 1| ≥
ε} = 0 ∀n if ε > 1, since |Xn− 1| cannot exceed 1. Thus it remains to see if this probability converges
to 0 for 0 < ε ≤ 1. For 0 < ε ≤ 1

P{|Xn − 1| ≥ ε} = P(Ac
n) = 1− P(An) → 0 as n →∞

(b) Suppose Xn
m.s.→ X as n → ∞ and E[X4

n] < ∞ for all n. Does X2
n necessarily converge in

mean square as n →∞?
Ans: No. Consider Ω = [0, 1] with the uniform probability measure, and let Xn = n11{ω∈[0,1/n4]}.
Then E[X4] = 1 < ∞ for all n, and Xn

m.s.→ X, with X = 0 a.s., but E[X2
nX2

n−1] = n2(n− 1)2/n4 →
1 6= E[X2X2] = 0, Thus, by the Cauchy criterion, X2

n does not converge in m.s. sense.

(c) Suppose X ∼ Unif[−1, 1] and Xn = Xn. Does Xn converge almost surely as n →∞?
Ans: Yes. Xn(ω) = X(ω)n → 0 for all ω except that for which X(ω) = 1 or X(ω) = −1, which
belong to set of measure 0. Thus Xn

a.s.→ 0.

(d) Suppose Xn
d.→ X, and an is a deterministic sequence such that an → a as n → ∞. Does

Xn + an necessarily converge in distribution as n →∞?
Ans: Yes. Using characteristic functions, we have E[ejuXn ] → E[ejuX ] for all u ∈ R. Thus

E[ej(Xn+an)u] = ejanuE[ejXnu] → ejauE[ejXu] = E[ej(X+a)u]

which means that Xn + an
d.→ X + a.

2. Let X1, X2, . . . be i.i.d. Bernoulli random variables, with

P{Xn = 0} =
3
4

and P{Xn = 1} =
1
4

Suppose Sn =
∑n

i=1 Xi.

(a) Find MX(θ), the moment generating function of Xn.
Ans: MX(θ) = E[eθXn ] = 1

4eθ + 3
4 .

(b) Use the Central Limit Theorem to find an approximation for P{S100 ≥ 50} in terms of the
Q(·) function.
Ans: µ = E[Xn] = 1

4 and σ2 = Var(Xn) = E[X2
n] − µ2 = 1

4 −
1
16 = 3

16 . Thus, by the Central Limit
Theorem, (S100 − 100µ)/(10σ) is approximately N (0, 1). Therefore,

P{S100 > 50} = P

{
S100 − 100µ

10σ
>

50− nµ

10σ

}
≈ Q

(
50− nµ

10σ

)
= Q

(
10√

3

)
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(c) Now use the Chernoff Bound to show that

P{S100 ≥ 50} ≤
(

4
3

)−50

Ans: By the Chernoff Bound,

P{S100 ≥ 50} = P

{
S100

100
≥ 1

2

}
≤ e−100 `(0.5)

where `(0.5) is obtained by maximizing

0.5 θ − lnMX(θ) = 0.5θ − ln(3 + eθ) + ln(4)

Taking the derivative and setting it equal to zero, we obtain that the optimizing θ∗ satisfies

0.5 =
eθ∗

3 + eθ∗
=⇒ θ∗ = ln 3

Thus `(0.5) = 0.5 ln 3− ln(3/2) = 0.5 ln 4− 0.5 ln 3, and the upper bound follows.

3. (12 pts) Suppose X, Y have joint pdf

fX,Y (x, y) =

{
6x if x, y ≥ 0 and x + y ≤ 1
0 otherwise

(a) Find E[X|Y ].
Ans: fX,Y (x, y) = 6x 11{0≤y≤1} 11{0≤x≤1−y}. Thus

fy(y) =
∫ 1−y

0

6xdx 11{0≤y≤1} = 3(1− y)2 11{0≤y≤1}

and for 0 ≤ y ≤ 1,

fX|Y (x|y) =
fX,Y (x, y)

fy(y)
=

2x

(1− y)2
11{0≤x≤1−y}.

Therefore, for 0 ≤ y ≤ 1,

E[X|Y = y] =
∫ 1−y

0

xfX|Y (x|y)dx =
2
3

(1− y)3

(1− y)2
=

2
3
(1− y)

and E[X|Y ] =
2
3
(1− Y ).

(b) Find the MSE achieved by E[X|Y ], i.e. find the minimum MSE.
Ans: It is easy to see that fx(x) = 6x(1− x)11{0≤x≤1}. Thus, the minimum MSE is given by

E[X2]− E[(E[X|Y ])2] =
∫ 1

0

6x3(1− x)dx− 4
9

∫ 1

0

3(1− y)4dy =
3
10
− 4

15
=

1
30

.

(c) Find Ê[X|Y ].
Ans: Since E[X|Y ] is linear in Y , Ê[X|Y ] = E[X|Y ].
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4. (14 pts) Suppose X, Y1, Y2 are zero-mean jointly Gaussian with covariance matrix

Cov

X
Y1

Y2

 =

 4 −1 −1
−1 1 0
−1 0 1


(a) Find P{Y1 + Y2 −X ≥ 10} in terms of the Q(·) function.

Ans: Let W = Y1 + Y2 −X. Then W is Gaussian with E[W ] = 0 and

Var(W ) = E[W 2] = E[Y 2
1 ]+E[Y 2

1 ]+E[X2]+2E[Y1Y2]−2E[XY1]−2E[XY2] = 1+1+4+0+2+2 = 10.

Thus P{Y1 + Y2 −X ≥ 10} = Q(
√

10 ).

(b) Find E[X|Y1] and E[X|Y2].
Ans: E[X|Y1] = 0 + Cov(X, Y1)Cov(Y1)−1(Y − 0) = −Y1. Similarly, E[X|Y2] = −Y2.

(c) Find fX|Y1,Y2
(x|y1, y2).

Ans: We know that given Y1 = y1, Y2 = y2, X is Gaussian with mean E[X|Y1 = y1, Y2 = y2], and
variance equal to Cov(e), with e = X − E[X|Y1, Y2]. Now, with Y = [Y1Y2]>,

E[X|Y = y] = 0 + Cov(X, Y )Cov(Y )−1[y] = [−1− 1]y = −y1 − y2.

(Note: we could have concluded this from part (b) using linear innovations.) Similarly,

Cov(e) = Cov(X)− Cov(X, Y )Cov(Y )−1Cov(Y ,X) = 4− [−1− 1] [−1− 1]> = 2

Thus fX|Y1,Y2(x|y1, y2) ∼ N (−y1 − y2, 2).

(d) Find P({X ≥ 2}|{Y1 + Y2 = 0}) in terms of the Q(·) function.
Ans: The straightforward way to do this problem is to define V = Y1 + Y2, note that X and V

are jointly Gaussian, find the conditional distribution of X given V using the MMSE approach, and
then compute the above probability. But based on the result of part (c), we can conclude that
fX|V (x|v) ∼ N (−v, 2). Thus P({X ≥ 2}|{Y1 + Y2 = 0}) = P({X ≥ 2}|{V = 0}) = Q(

√
2 ).

(e) Let Z = Y 2
1 + Y 2

2 . Find Ê[X|Z].
Ans: Note that Cov(X, Z) = E[XY 2

1 ] + E[XY 2
2 ] = 0, since for i = 1, 2,

E[XY 2
i ] = E[E[XY 2

i |Yi]] = E[Y 2
i E[X|Yi]] = −E[Y 3

i ] = 0

Thus
Ê[X|Z] = E[X]− 0 = 0
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