October 13, 2009

Exam 1

- You have 1.5 hours to complete this exam.
- Don't forget to put your name on the answer booklet.
- You are allowed 1 sheet of handwritten notes ($8.5 " \times 11^{\prime}$, both sides).
- Calculators laptop computers, PDA's, etc. are not permitted.
- Maximum possible score is 50 .
- Neatness counts, especially for partial credit towards incorrect solutions.

1. (16 pts) Convergence. In each of the following four parts, you are asked a question about the convergence of a sequence of random variables. If you say yes, provide a proof and the limiting random variable. If you say no, disprove or provide a counterexample.
(a) Let A_{1}, A_{2}, \ldots be a sequence of independent events such that $\mathrm{P}\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$. Now define a sequence of random variables $X_{n}=\mathbb{1}_{A_{n}}, n=1,2, \ldots$.
Does X_{n} converge in probability as $n \rightarrow \infty$?
(b) Suppose $X_{n} \xrightarrow{\text { m.s. }} X$ as $n \rightarrow \infty$ and $\mathrm{E}\left[X_{n}^{4}\right]<\infty$ for all n.

Does X_{n}^{2} necessarily converge in mean square as $n \rightarrow \infty$?
(c) Suppose $X \sim \operatorname{Unif}[-1,1]$ and $X_{n}=X^{n}$.

Does X_{n} converge almost surely as $n \rightarrow \infty$?
(d) Suppose $X_{n} \xrightarrow{\text { d. }} X$, and a_{n} is a deterministic sequence such that $a_{n} \rightarrow a$ as $n \rightarrow \infty$.

Does $X_{n}+a_{n}$ necessarily converge in distribution as $n \rightarrow \infty$? (Hint: Characteristic functions.)
2. (10 pts) CLT and CB. Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli random variables, with

$$
\mathrm{P}\left\{X_{n}=0\right\}=\frac{3}{4} \quad \text { and } \quad \mathrm{P}\left\{X_{n}=1\right\}=\frac{1}{4}
$$

Suppose $S_{n}=\sum_{i=1}^{n} X_{i}$.
(a) Find $M_{X}(\theta)$, the moment generating function of X_{n}.
(b) Use the Central Limit Theorem to find an approximation for $\mathrm{P}\left\{S_{100} \geq 50\right\}$ in terms of the $Q(\cdot)$ function.
(c) Now use the Chernoff Bound to show that

$$
\mathrm{P}\left\{S_{100} \geq 50\right\} \leq\left(\frac{4}{3}\right)^{-50}
$$

3. (10 pts) MMSE. Suppose X, Y have joint pdf

$$
f_{X, Y}(x, y)= \begin{cases}6 x & \text { if } x, y \geq 0 \text { and } x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $\mathrm{E}[X \mid Y]$.
(b) Find the MSE achieved by $\mathrm{E}[X \mid Y]$, i.e. find the minimum MSE.
(c) Find $\hat{\mathrm{E}}[X \mid Y]$.
4. (14 pts) Gaussian MMSE. Suppose X, Y_{1}, Y_{2} are zero-mean jointly Gaussian with covariance

$$
\operatorname{Cov}\left(\left[\begin{array}{l}
X \\
Y_{1} \\
Y_{2}
\end{array}\right]\right)=\left[\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

(a) Find $\mathrm{P}\left\{Y_{1}+Y_{2}-X \geq 10\right\}$ in terms of the $Q(\cdot)$ function.
(b) Find $\mathrm{E}\left[X \mid Y_{1}\right]$ and $\mathrm{E}\left[X \mid Y_{2}\right]$.
(c) Find $f_{X \mid Y_{1}, Y_{2}}\left(x \mid y_{1}, y_{2}\right)$.
(d) Find $\mathrm{P}\left(\{X \geq 2\} \mid\left\{Y_{1}+Y_{2}=0\right\}\right)$ in terms of the $Q(\cdot)$ function.
(e) Let $Z=Y_{1}^{2}+Y_{2}^{2}$. Find $\hat{\mathrm{E}}[X \mid Z]$.
(Hint: For $W \sim \mathcal{N}\left(0, \sigma^{2}\right), \mathrm{E}\left[W^{3}\right]=0$ and $\mathrm{E}\left[W^{4}\right]=3 \sigma^{2}$.)

