Fall 2009

ECE 534

October 13, 2009

Exam 1

- You have 1.5 hours to complete this exam.
- Don't forget to put your name on the answer booklet.
- You are allowed 1 sheet of handwritten notes $(8.5" \times 11', \text{ both sides})$.
- Calculators laptop computers, PDA's, etc. are not permitted.
- Maximum possible score is 50.
- Neatness counts, especially for partial credit towards incorrect solutions.
- 1. (16 pts) *Convergence*. In each of the following four parts, you are asked a question about the convergence of a sequence of random variables. If you say yes, provide a proof and the limiting random variable. If you say no, disprove or provide a counterexample.
 - (a) Let A_1, A_2, \ldots be a sequence of independent events such that $\mathsf{P}(A_n) \to 1$ as $n \to \infty$. Now define a sequence of random variables $X_n = \mathbb{1}_{A_n}, n = 1, 2, \ldots$ Does X_n converge in probability as $n \to \infty$?
 - (b) Suppose $X_n \xrightarrow{m.s.} X$ as $n \to \infty$ and $\mathsf{E}[X_n^4] < \infty$ for all n. Does X_n^2 necessarily converge in mean square as $n \to \infty$?
 - (c) Suppose $X \sim \text{Unif}[-1, 1]$ and $X_n = X^n$. Does X_n converge almost surely as $n \to \infty$?
 - (d) Suppose $X_n \xrightarrow{d} X$, and a_n is a deterministic sequence such that $a_n \to a$ as $n \to \infty$. Does $X_n + a_n$ necessarily converge in distribution as $n \to \infty$? (Hint: Characteristic functions.)
- 2. (10 pts) CLT and CB. Let X_1, X_2, \ldots be i.i.d. Bernoulli random variables, with

$$\mathsf{P}{X_n = 0} = \frac{3}{4}$$
 and $\mathsf{P}{X_n = 1} = \frac{1}{4}$

Suppose $S_n = \sum_{i=1}^n X_i$.

- (a) Find $M_X(\theta)$, the moment generating function of X_n .
- (b) Use the Central Limit Theorem to find an approximation for $\mathsf{P}\{S_{100} \ge 50\}$ in terms of the $Q(\cdot)$ function.
- (c) Now use the Chernoff Bound to show that

$$\mathsf{P}\{S_{100} \ge 50\} \le \left(\frac{4}{3}\right)^{-50}$$

3. (10 pts) MMSE. Suppose X, Y have joint pdf

$$f_{X,Y}(x,y) = \begin{cases} 6x & \text{if } x, y \ge 0 \text{ and } x+y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find $\mathsf{E}[X|Y]$.
- (b) Find the MSE achieved by E[X|Y], i.e. find the minimum MSE.
- (c) Find $\hat{\mathsf{E}}[X|Y]$.
- 4. (14 pts) Gaussian MMSE. Suppose X, Y_1, Y_2 are zero-mean jointly Gaussian with covariance

$$\operatorname{Cov}\left(\begin{bmatrix} X\\Y_1\\Y_2\end{bmatrix}\right) = \begin{bmatrix} 4 & -1 & -1\\-1 & 1 & 0\\-1 & 0 & 1\end{bmatrix}$$

- (a) Find $\mathsf{P}\{Y_1 + Y_2 X \ge 10\}$ in terms of the $Q(\cdot)$ function.
- (b) Find $\mathsf{E}[X|Y_1]$ and $\mathsf{E}[X|Y_2]$.
- (c) Find $f_{X|Y_1,Y_2}(x|y_1,y_2)$.
- (d) Find $\mathsf{P}(\{X \ge 2\} | \{Y_1 + Y_2 = 0\})$ in terms of the $Q(\cdot)$ function.
- $\begin{array}{ll} \mbox{(e)} & \mbox{Let } Z=Y_1^2+Y_2^2. \mbox{ Find } \widehat{\mathsf{E}}[X|Z].\\ \mbox{(Hint: For } W\sim \mathcal{N}(0,\sigma^2), \mbox{ } \mathsf{E}[W^3]=0 \mbox{ and } \mathsf{E}[W^4]=3\sigma^2.) \end{array}$