ECE 534

Fall 2009
December 16, 2009
Solutions to Final Exam
1. (24 pts, equally weighted parts) True or False.
(a) If Uy, Us,..., is a sequence i.i.d. Unif][0,1] random variables and X,, = (U,)", n > 1, then

(b)

X, converges in probability as n — oo.

Ans: True. In fact X,, ™ 0, since E[X2] = E[U2"] =1/(2n + 1) — 0 as n — oo.

Suppose E[X2] < oo, for all n. If X,, & ¢, where ¢ is a deterministic constant, then X,, ™" ¢
as well.

Ans: False. Consider Q = [0,1] with the uniform probability measure, and let X,, = nlly,cjo,1/n)}-
Then X,, 3 0 and hence X,, % 0, but E[X2] = n — oo as n — oo.

If (Xy,t € R) is Gaussian random process with covariance function Cx (s,t) = st + min{s, ¢},
then (X;) cannot be a Markov process.

Ans: False. A Gauss-Markov process needs to satisfy, for r < s <t

Cx(r,s) Cx(s,t)

Ox(rt) = Cx(5,9)

It is easy to check that the given covariance function does satisfy the condition and is indeed Markov.

If X and Y are jointly Gaussian random variables with finite second moments, then
E[(X — E[X|Y])’] = E[(X — E[X[Y;Y?])’]

Ans: True. Since X and Y are jointly Gaussian, the MMSE estimate is linear. So adding a quadratic
term to the LMMSE estimator cannot decrease the MSE below that obtained by just having the linear
term.

The function R(7) = |sin(7)| is a valid auto-correlation function for a WSS process.

Ans: False. R(0) =0< R(7/2) =1.

The function S(w) = e~¥l|sin(w)| is a valid power spectral density for a WSS process.

Ans: True. Since S(w) is real-valued and > 0 for all w.

A time-homogenous discrete-state Markov process (X;) satisfies 7(t) = 7 for some distribu-
tion w. Then (X;) must be a (strictly) stationary process.

Ans: True. For any n and t; < t2 < --- < t,, the joint distribution of Xy, , Xy,,..., X, depends on
the marginal of X;, and the transition matrices H(t1,t2), H(ta,t3), ... H(tn—1,t,), all of which are
invariant if we replace t; by t; +7,i=1,2,...,n.

For zero-mean jointly WSS (X;) and (Y;), the noncausal Wiener filter for optimum linear
estimation of X; given {Y; : s € R} is necessarily time-invariant.

Ans: True. It is easy to see that the linear Kernel h(u,v) for optimum estimation of X; given
{Y; : s € R} must be the same that for estimation of X;;, from {Ys : s € R} = {Y;4, : s € R}, which
means that h(u,v) = h(u+ 7,0+ 7) for all 7 € R.
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2. (12 pts) CLT and Chernoff Bound. Let {Xj : k > 0} be a sequence of i.i.d. random variables
with
1 1 1

Suppose Sy, = > p_q Xk

(a) Find Mx (@), the moment generating function of Xp.
Ans: Mx(0) = E[e?X] = L(ef +e7%) + 1.

(b) Use the Central Limit Theorem to find an approximation for P{S1p9 > 50} in terms of the
Q(+) function.
Ans: p = E[X,] = 0 and 0% = Var(X,) = E[X?] = 1. Thus, by the Central Limit Theorem,
(S100/(100) is approximately N(0,1). Therefore,

_ S100 50 -
P{S100 > 50} = P{ 100 100} ~Q (5\@)

(c) Now use the Chernoff Bound to find a bound on P{Sjo0 > 50}.
Ans: By the Chernoff Bound,

5100 1 —100 ¢
P > =p{E0 > 2 < (0.5)
{100 = 50} { 100 —2[=°

where £(0.5) is obtained by maximizing
0.50 —In Mx(0) = 0.50 —In(2 + ¢’ + %) +In(4)
Taking the derivative and setting it equal to zero, we obtain that the optimizing 6* satisfies

69 — e

T 24l te O

o
0.5

Setting 2 = e’ reduces the above equation to the quadratic 2 — 22 — 3 = 0, which has the solutions
x = 3 and x = —1. Since x has to be positive, we conclude that + = 3 = 6* = In3. Thus
£(0.5) = 0.51n3 — In(4/3) = In(3+/3/4). Therefore,

~100
P{S100 > 50} < (32/§>

3. (14 pts) Linear Innovations. Let (Y : k > 1) be a discrete-time zero-mean WSS random process
with ACF
Ry (k) = (0.5)"

(a) Find the linear innovations sequence Y1, Ys, Y3 corresponding to the first three samples of the
process Y7, Yo, Ys.
Ans: V7 = Yy, and Yy = Y, — E[Y3|Vi] = Yy — E[Y2|V3]. Now, Var(Y;) = 1 and Cov(Ys,V;) =
0.5. Thus E[Yg|Yﬂ = 0.5Y;, and Y3 = Y5 — 0.5Y;. Now by linear innovations applied recursively,
V3 = Y3 — (E[Y3|Y2] + E[Y3Y1]). Since Cov(Y3, Y1) = 0.25, E[Y3|Y1] = E[Y;|V1] = 0.25Y;. Furthermore,
Var(Y3) = Var(Y3)+0.25Var(Y;)—E[Y1 Ya] = 2, and Cov(Y3, Ya) = E[Y3Ya]—0.5E[Y3Y] = 0.5—0.125 =
3, which means that E[Y3|Ys] = £2Y5 = 0.5Y. Thus Y3 = Y3 — 0.25Y; — 0.5(Y2 — 0.5Y;) = Y3 — 0.5Y>.
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(b) Now suppose X is a zero mean random variable with finite second moment satisfying
E[XY1] =1, E[XY]=0.5, E[XY3]=0.25

Find the LMMSE estimate E[X|Y1, Ya, Y3].

Ans: E[X|Y1, Y, 3] = E[X|Y1] + E[X|Y3] + E[X|Y3]. Now, E[X|V1] = E[X|Vi]E[XY}]Var(V;) ™'Y}
Y1. Furthermore, it is easy to see that E[X Y] = E[XY3] = 0, which means that E[X|Y5] = E[X|V3] =
0. Thus E[X|Y;,Ys, V3] = V7.

4. (16 pts) Poisson process. Let (Ny :t > 0) be a Poisson process with parameter A = 1.
(a) Find P{N3 <2 | Ny > 1}.

Ans: P{N; <2, Ny >1}
PNy <2|N; >1} =22 =20 1=
N <2[ N1 21} P{N, > 1}
Now, P{N; > 1} =1—P{N; =0} =1 — e~ !, and using the independent increment property of (N;),
P{N;<2, Ny >1}=P{N, =2, Ny— N, =0} +P{N, =1, NS—N1§1}:---=56*3

3

Thus P{N3 <2 | Ny > 1} = I~
(b) Find P{Nl >1 | N3 < 2}
Ans: P{N; <2} =e®+3e2+2e%=1e 3 Thus P{N; >1|N; <2} = L.

(c) Now suppose we define the random variable Z via the m.s. integral

1
- / Ndt
0
Find the LMMSE estimate E[Ns|Z].

Ans: The autocovariance function of (V) is given by Cy(s,t) = min(s, t).

! 1 1
E[Z] :/ tdt = 3 Var(Z) / / Cn (s, t)dtds —/ / min(s, t) dtds = 3
t=0

Furthermore,

COV NQ, / CN t 2 dt = / tdt = =

Thus E[N,|Z] =2+ 13 (Z- 1) =

w\w
»MU\

5. (20 pts) FSMP. Consider a time-homogeneous discrete-time Markov process (Xj : &k > 0) with
state space S = {—1,0,1} and one-step probability transition matrix P given by

02 08 0
P=1{04 02 04
0 08 02

(a) Find the equilibrium distribution .
Ans: Using the fact that 7 = 7P and w e = 1, it is easy to show that 7_; =7 = i and 7y = %
For the remaining parts, assume that Xy has the equilibrium distribution.
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(b) Determine whether or not (X}) is a martingale.
Ans: No. For example, E[X2|X; = —1] = (0.2)(—1) + (0.8)(0) = —0.2 # —1.

(c¢) Find the joint distribution of X; and Xs. (You may want to put the values in a table.)
Ans: P{X, =j,X; =i} =mP, ;. Thus the joint pmf is described by table

| =10 |1
~1[005] 02 0
0 |02 00102
1| 0 |02 005

(d) Let the discrete-time process (Yy : k > 0) be defined by
Y, =X1+kXo, k>0

Find the mean and autocorrelation function of (Yy).
Ans: E[X;] = E[X5] = 0, E[X?] = E[X3] = 1, and E[X;X5] = (—1)(—1)(0.05) + (1)(1)(0.05) = 0.1.
Thus
1 km
() Find E[Y |1, Y.
Ans: Y2 = X1 + 2X2 = 2Y1 — Yo. Thus E[}/2|Y1,Y0] = 2Y1 — Yo.
(f) Determine whether or not (Y%) is a Markov process.
Ans: No, since E[Y2|Y7, Y] depends on both Y and Yy. In particular

1
EYValyy = 1Yo =1 = 1#EMY1 =1 = 1+ E[Xpi = 1] =1+ 5

6. (14 pts) Filtering. Consider a zero-mean WSS process (X;) with autocorrelation function

1
Rx(r) = 56_‘7‘

Suppose (X;) is passed through a linear time-invariant system with transfer function

1
H =
(@) 3+ jw
to produce the output process (Y;).
(a) Find Sy x(w) and use it to find Ry x (7).
Ans:
1 1 1 1 1 1 1 1

:H = _ - — —_
Syxlw) = Hw)Sx (W) = 3= T 5 = 177w T81-jw 831 J0

where the last equality follows from using partial fractions. Applying the inverse Fourier transform

1

1, .
RYX(T) = (46 - ge 3 > ]1{7'20} + ge ]l{T<0}
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(b) Find Sy (w) and use it to find Ry (7).

Ans: Sy (w) = Sx(w)|H(w)|?. Using the Fourier transform pairs given to you

Sy(w)

9+ 14+w? 8 |1+w? 9tw?

8

2 1+w?2 6 9+w?

1 1 1 1 1 }1{1 2 1 6

and therefore ) )
I L e I
By(m) = 15¢ 48°
(c) Find the LMMSE estimate E[X5|Y;].
Ans: E[X,Y1] = E[Y1X5] = Ryx(—1) = e~ ! and Var(Y;) = Ry (0) = 5;. Thus

. 1
E[Xo|V1] =0+ é6*124(Y1 —0)=3e"'Y;

7. (Extra credit — attempt only if you have time; I will not grade your answer if you have not finished
the rest of the exam)
The Cliff-Hanger. A drunken man is near a cliff. From where he stands, one step toward the cliff
would send him over the edge. He takes a random step either towards or away from the cliff. At
any step, his probability of taking a step away from the cliff is p, and of a step towards the cliff is

(1 —p). Find the probability that he will escape unharmed as a function of p, for the entire range
0<p<1

Ans: This is essentially the Gambler’s ruin problem with initial wealth of £ = 1 and goal of b = co. It
is easier to calculate the probability that the man will fall off the cliff, which we denote by p. Using the

formula we derived in class, we get (for p # %)
() ()
. P P
p = lim

booo (1;1,)17
P

b
fo<p< %, (1_7”) converges to co as b — 0o, which means that p = 1.

b
If % <p<l, (1%’) converges to 0 as b — oo, which means that p = 1%’.

For p = %, we use the boundary conditions to get p = limp_ o 1 — % =1.

We can also solve the problem directly without using the Gambler’s ruin solution. Note that the probability
of falling off the cliff starting two steps away is simply p?. Thus p = (1 — p) + p%p, which we can solve to
get p=lorp=(1—-p)/p. fp< %, the second solution is impossible since p has to be < 1. For p = 1,
it is clear that p = 0. Now, we can argue that p should be continuous in p to conclude that for p > %,
p=(1-p)/p.
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