Solutions to Final Exam

1. (24 pts, equally weighted parts) True or False.
(a) If U_{1}, U_{2}, \ldots, is a sequence i.i.d. Unif $[0,1]$ random variables and $X_{n}=\left(U_{n}\right)^{n}, n \geq 1$, then X_{n} converges in probability as $n \rightarrow \infty$.
Ans: True. In fact $X_{n} \xrightarrow{\text { m.s. }} 0$, since $\mathrm{E}\left[X_{n}^{2}\right]=\mathrm{E}\left[U_{n}^{2 n}\right]=1 /(2 n+1) \rightarrow 0$ as $n \rightarrow \infty$.
(b) Suppose $\mathrm{E}\left[X_{n}^{2}\right]<\infty$, for all n. If $X_{n} \xrightarrow{p} c$, where c is a deterministic constant, then $X_{n} \xrightarrow{\text { m.s. }} c$ as well.
Ans: False. Consider $\Omega=[0,1]$ with the uniform probability measure, and let $X_{n}=n \mathbb{1}_{\{\omega \in[0,1 / n]\}}$. Then $X_{n} \xrightarrow{\text { a.s. }} 0$ and hence $X_{n} \xrightarrow{p_{i}} 0$, but $\mathrm{E}\left[X_{n}^{2}\right]=n \rightarrow \infty$ as $n \rightarrow \infty$.
(c) If $\left(X_{t}, t \in \mathbb{R}\right)$ is Gaussian random process with covariance function $C_{X}(s, t)=s t+\min \{s, t\}$, then $\left(X_{t}\right)$ cannot be a Markov process.
Ans: False. A Gauss-Markov process needs to satisfy, for $r<s<t$

$$
C_{X}(r, t)=\frac{C_{X}(r, s) C_{X}(s, t)}{C_{X}(s, s)}
$$

It is easy to check that the given covariance function does satisfy the condition and is indeed Markov.
(d) If X and Y are jointly Gaussian random variables with finite second moments, then

$$
\mathrm{E}\left[(X-\mathrm{E}[X \mid Y])^{2}\right]=\mathrm{E}\left[\left(X-\hat{\mathrm{E}}\left[X \mid Y, Y^{2}\right]\right)^{2}\right]
$$

Ans: True. Since X and Y are jointly Gaussian, the MMSE estimate is linear. So adding a quadratic term to the LMMSE estimator cannot decrease the MSE below that obtained by just having the linear term.
(e) The function $R(\tau)=|\sin (\tau)|$ is a valid auto-correlation function for a WSS process.

Ans: False. $R(0)=0<R(\pi / 2)=1$.
(f) The function $S(\omega)=e^{-|\omega|}|\sin (\omega)|$ is a valid power spectral density for a WSS process. Ans: True. Since $S(\omega)$ is real-valued and ≥ 0 for all ω.
(g) A time-homogenous discrete-state Markov process $\left(X_{t}\right)$ satisfies $\underline{\pi}(t)=\underline{\pi}$ for some distribution $\underline{\pi}$. Then $\left(X_{t}\right)$ must be a (strictly) stationary process.
Ans: True. For any n and $t_{1}<t_{2}<\cdots<t_{n}$, the joint distribution of $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}$ depends on the marginal of $X_{t_{1}}$ and the transition matrices $H\left(t_{1}, t_{2}\right), H\left(t_{2}, t_{3}\right), \ldots H\left(t_{n-1}, t_{n}\right)$, all of which are invariant if we replace t_{i} by $t_{i}+\tau, i=1,2, \ldots, n$.
(h) For zero-mean jointly WSS $\left(X_{t}\right)$ and $\left(Y_{t}\right)$, the noncausal Wiener filter for optimum linear estimation of X_{t} given $\left\{Y_{s}: s \in \mathbb{R}\right\}$ is necessarily time-invariant.
Ans: True. It is easy to see that the linear Kernel $h(u, v)$ for optimum estimation of X_{t} given $\left\{Y_{s}: s \in \mathbb{R}\right\}$ must be the same that for estimation of $X_{t+\tau}$ from $\left\{Y_{s}: s \in \mathbb{R}\right\}=\left\{Y_{s+\tau}: s \in \mathbb{R}\right\}$, which means that $h(u, v)=h(u+\tau, v+\tau)$ for all $\tau \in \mathbb{R}$.
2. (12 pts) CLT and Chernoff Bound. Let $\left\{X_{k}: k \geq 0\right\}$ be a sequence of i.i.d. random variables with

$$
\mathrm{P}\left\{X_{k}=-1\right\}=\frac{1}{4} \quad \mathrm{P}\left\{X_{k}=0\right\}=\frac{1}{2} \quad \mathrm{P}\left\{X_{k}=1\right\}=\frac{1}{4}
$$

Suppose $S_{n}=\sum_{k=1}^{n} X_{k}$.
(a) Find $M_{X}(\theta)$, the moment generating function of X_{k}.

Ans: $M_{X}(\theta)=\mathrm{E}\left[e^{\theta X_{n}}\right]=\frac{1}{4}\left(e^{\theta}+e^{-\theta}\right)+\frac{1}{2}$.
(b) Use the Central Limit Theorem to find an approximation for $\mathrm{P}\left\{S_{100} \geq 50\right\}$ in terms of the $Q(\cdot)$ function.
Ans: $\mu=\mathrm{E}\left[X_{n}\right]=0$ and $\sigma^{2}=\operatorname{Var}\left(X_{n}\right)=\mathrm{E}\left[X_{n}^{2}\right]=\frac{1}{2}$. Thus, by the Central Limit Theorem, ($S_{100} /(10 \sigma)$ is approximately $\mathcal{N}(0,1)$. Therefore,

$$
\mathrm{P}\left\{S_{100}>50\right\}=\mathrm{P}\left\{\frac{S_{100}}{10 \sigma}>\frac{50}{10 \sigma}\right\} \approx Q(5 \sqrt{2})
$$

(c) Now use the Chernoff Bound to find a bound on $\mathrm{P}\left\{S_{100} \geq 50\right\}$.

Ans: By the Chernoff Bound,

$$
\mathrm{P}\left\{S_{100} \geq 50\right\}=\mathrm{P}\left\{\frac{S_{100}}{100} \geq \frac{1}{2}\right\} \leq e^{-100 \ell(0.5)}
$$

where $\ell(0.5)$ is obtained by maximizing

$$
0.5 \theta-\ln M_{X}(\theta)=0.5 \theta-\ln \left(2+e^{\theta}+e^{-\theta}\right)+\ln (4)
$$

Taking the derivative and setting it equal to zero, we obtain that the optimizing θ^{*} satisfies

$$
0.5=\frac{e^{\theta^{*}}-e^{-\theta^{*}}}{2+e^{\theta^{*}}+e^{-\theta^{*}}}
$$

Setting $x=e^{\theta^{*}}$ reduces the above equation to the quadratic $x^{2}-2 x-3=0$, which has the solutions $x=3$ and $x=-1$. Since x has to be positive, we conclude that $x=3 \Longrightarrow \theta^{*}=\ln 3$. Thus $\ell(0.5)=0.5 \ln 3-\ln (4 / 3)=\ln (3 \sqrt{3} / 4)$. Therefore,

$$
\mathrm{P}\left\{S_{100} \geq 50\right\} \leq\left(\frac{3 \sqrt{3}}{4}\right)^{-100}
$$

3. (14 pts) Linear Innovations. Let $\left(Y_{k}: k \geq 1\right)$ be a discrete-time zero-mean WSS random process with ACF

$$
R_{Y}(k)=(0.5)^{|k|}
$$

(a) Find the linear innovations sequence $\tilde{Y}_{1}, \tilde{Y}_{2}, \tilde{Y}_{3}$ corresponding to the first three samples of the process Y_{1}, Y_{2}, Y_{3}.
Ans: $\tilde{Y}_{1}=Y_{1}$, and $\tilde{Y}_{2}=Y_{2}-\hat{\mathrm{E}}\left[Y_{2} \mid \tilde{Y}_{1}\right]=Y_{2}-\hat{\mathrm{E}}\left[Y_{2} \mid Y_{1}\right]$. Now, $\operatorname{Var}\left(Y_{1}\right)=1$ and $\operatorname{Cov}\left(Y_{2}, Y_{1}\right)=$ 0.5. Thus $\hat{\mathrm{E}}\left[Y_{2} \mid Y_{1}\right]=0.5 Y_{1}$, and $\tilde{Y}_{2}=Y_{2}-0.5 Y_{1}$. Now by linear innovations applied recursively, $\tilde{Y}_{3}=Y_{3}-\left(\hat{\mathrm{E}}\left[Y_{3} \mid \tilde{Y}_{2}\right]+\hat{\mathrm{E}}\left[Y_{3} \mid \tilde{Y}_{1}\right]\right)$. Since $\operatorname{Cov}\left(Y_{3}, Y_{1}\right)=0.25, \hat{\mathrm{E}}\left[Y_{3} \mid \tilde{Y}_{1}\right]=\hat{\mathrm{E}}\left[Y_{3} \mid Y_{1}\right]=0.25 Y_{1}$. Furthermore, $\operatorname{Var}\left(\tilde{Y}_{2}\right)=\operatorname{Var}\left(Y_{2}\right)+0.25 \operatorname{Var}\left(Y_{1}\right)-\mathrm{E}\left[Y_{1} Y_{2}\right]=\frac{3}{4}$, and $\operatorname{Cov}\left(Y_{3}, \tilde{Y}_{2}\right)=\mathrm{E}\left[Y_{3} Y_{2}\right]-0.5 \mathrm{E}\left[Y_{3} Y_{1}\right]=0.5-0.125=$ $\frac{3}{8}$, which means that $\hat{\mathrm{E}}\left[Y_{3} \mid \tilde{Y}_{2}\right]=\frac{3}{8} \frac{4}{3} \tilde{Y}_{2}=0.5 \tilde{Y}_{2}$. Thus $\tilde{Y}_{3}=Y_{3}-0.25 Y_{1}-0.5\left(Y_{2}-0.5 Y_{1}\right)=Y_{3}-0.5 Y_{2}$.
(b) Now suppose X is a zero mean random variable with finite second moment satisfying

$$
\mathrm{E}\left[X Y_{1}\right]=1, \quad \mathrm{E}\left[X Y_{2}\right]=0.5, \quad \mathrm{E}\left[X Y_{3}\right]=0.25
$$

Find the LMMSE estimate $\hat{\mathrm{E}}\left[X \mid Y_{1}, Y_{2}, Y_{3}\right]$.
Ans: $\hat{\mathrm{E}}\left[X \mid Y_{1}, Y_{2}, Y_{3}\right]=\hat{\mathrm{E}}\left[X \mid \tilde{Y}_{1}\right]+\hat{\mathrm{E}}\left[X \mid \tilde{Y}_{2}\right]+\hat{\mathrm{E}}\left[X \mid \tilde{Y}_{3}\right]$. Now, $\hat{\mathrm{E}}\left[X \mid \tilde{Y}_{1}\right]=\hat{\mathrm{E}}\left[X \mid Y_{1}\right] \mathrm{E}\left[X Y_{1}\right] \operatorname{Var}\left(Y_{1}\right)^{-1} Y_{1}=$ Y_{1}. Furthermore, it is easy to see that $\mathrm{E}\left[X \tilde{Y}_{2}\right]=\mathrm{E}\left[X \tilde{Y}_{3}\right]=0$, which means that $\hat{\mathrm{E}}\left[X \mid \tilde{Y}_{2}\right]=\hat{\mathrm{E}}\left[X \mid \tilde{Y}_{3}\right]=$ 0 . Thus $\hat{\mathrm{E}}\left[X \mid Y_{1}, Y_{2}, Y_{3}\right]=Y_{1}$.
4. (16 pts) Poisson process. Let $\left(N_{t}: t \geq 0\right)$ be a Poisson process with parameter $\lambda=1$.
(a) Find $\mathrm{P}\left\{N_{3} \leq 2 \mid N_{1} \geq 1\right\}$.

Ans:

$$
\mathrm{P}\left\{N_{3} \leq 2 \mid N_{1} \geq 1\right\}=\frac{\mathrm{P}\left\{N_{3} \leq 2, N_{1} \geq 1\right\}}{\mathrm{P}\left\{N_{1} \geq 1\right\}}
$$

Now, $\mathrm{P}\left\{N_{1} \geq 1\right\}=1-\mathrm{P}\left\{N_{1}=0\right\}=1-e^{-1}$, and using the independent increment property of $\left(N_{t}\right)$,

$$
\mathrm{P}\left\{N_{3} \leq 2, N_{1} \geq 1\right\}=\mathrm{P}\left\{N_{1}=2, N_{3}-N_{1}=0\right\}+\mathrm{P}\left\{N_{1}=1, N_{3}-N_{1} \leq 1\right\}=\cdots=\frac{7}{2} e^{-3}
$$

Thus $\operatorname{P}\left\{N_{3} \leq 2 \mid N_{1} \geq 1\right\}=\frac{7}{2} \frac{e^{-3}}{1-e^{-1}}$
(b) Find $\mathrm{P}\left\{N_{1} \geq 1 \mid N_{3} \leq 2\right\}$.

Ans: $\mathrm{P}\left\{N_{3} \leq 2\right\}=e^{-3}+3 e^{-3}+\frac{9}{2} e^{-3}=\frac{17}{2} e^{-3}$. Thus $\mathrm{P}\left\{N_{1} \geq 1 \mid N_{3} \leq 2\right\}=\frac{7}{17}$.
(c) Now suppose we define the random variable Z via the m.s. integral

$$
Z=\int_{0}^{1} N_{t} d t
$$

Find the LMMSE estimate $\hat{E}\left[N_{2} \mid Z\right]$.
Ans: The autocovariance function of $\left(N_{t}\right)$ is given by $C_{N}(s, t)=\min (s, t)$.

$$
\mathrm{E}[Z]=\int_{t=0}^{1} t d t=\frac{1}{2}, \quad \operatorname{Var}(Z)=\int_{0}^{1} \int_{0}^{1} C_{N}(s, t) d t d s=\int_{0}^{1} \int_{0}^{1} \min (s, t) d t d s=\frac{1}{3}
$$

Furthermore,

$$
\operatorname{Cov}\left(N_{2}, Z\right)=\int_{t=0}^{1} C_{N}(t, 2) d t=\int_{t=0}^{1} t d t=\frac{1}{2}
$$

Thus $\hat{\mathrm{E}}\left[N_{2} \mid Z\right]=2+\frac{1}{2} 3\left(Z-\frac{1}{2}\right)=\frac{3}{2} Z+\frac{5}{4}$.
5. (20 pts) FSMP. Consider a time-homogeneous discrete-time Markov process ($X_{k}: k \geq 0$) with state space $\mathcal{S}=\{-1,0,1\}$ and one-step probability transition matrix P given by

$$
P=\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0.2 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right]
$$

(a) Find the equilibrium distribution $\underline{\pi}$.

Ans: Using the fact that $\underline{\pi}=\underline{\pi} P$ and $\underline{\pi} \underline{e}=1$, it is easy to show that $\pi_{-1}=\pi_{1}=\frac{1}{4}$ and $\pi_{0}=\frac{1}{2}$.
For the remaining parts, assume that X_{0} has the equilibrium distribution.
(b) Determine whether or not $\left(X_{k}\right)$ is a martingale.

Ans: No. For example, $\mathrm{E}\left[X_{2} \mid X_{1}=-1\right]=(0.2)(-1)+(0.8)(0)=-0.2 \neq-1$.
(c) Find the joint distribution of X_{1} and X_{2}. (You may want to put the values in a table.)

Ans: $P\left\{X_{2}=j, X_{1}=i\right\}=\pi_{i} P_{i, j}$. Thus the joint pmf is described by table

	-1	0	1
-1	0.05	0.2	0
0	0.2	00.1	0.2
1	0	0.2	0.05

(d) Let the discrete-time process $\left(Y_{k}: k \geq 0\right)$ be defined by

$$
Y_{k}=X_{1}+k X_{2}, \quad k \geq 0
$$

Find the mean and autocorrelation function of $\left(Y_{k}\right)$.
Ans: $\mathrm{E}\left[X_{1}\right]=\mathrm{E}\left[X_{2}\right]=0, \mathrm{E}\left[X_{1}^{2}\right]=\mathrm{E}\left[X_{2}^{2}\right]=\frac{1}{2}$, and $\mathrm{E}\left[X_{1} X_{2}\right]=(-1)(-1)(0.05)+(1)(1)(0.05)=0.1$.
Thus

$$
\mathrm{E}\left[Y_{k}\right]=0, \quad R_{Y}(k, m)=\mathrm{E}\left[Y_{k} Y_{m}\right]=\frac{1}{2}+\frac{k m}{2}+(0.1)(k+m)
$$

(e) Find $\mathrm{E}\left[Y_{2} \mid Y_{1}, Y_{0}\right]$.

Ans: $Y_{2}=X_{1}+2 X_{2}=2 Y_{1}-Y_{0}$. Thus $\mathrm{E}\left[Y_{2} \mid Y_{1}, Y_{0}\right]=2 Y_{1}-Y_{0}$.
(f) Determine whether or not $\left(Y_{k}\right)$ is a Markov process.

Ans: No, since $\mathrm{E}\left[Y_{2} \mid Y_{1}, Y_{0}\right]$ depends on both Y_{1} and Y_{0}. In particular

$$
\mathrm{E}\left[Y_{2} \mid Y_{1}=1, Y_{0}=1\right]=1 \neq \mathrm{E}\left[Y_{2} \mid Y_{1}=1\right]=1+\mathrm{E}\left[X_{2} \mid Y_{1}=1\right]=1+\frac{1}{2}
$$

6. (14 pts) Filtering. Consider a zero-mean WSS process $\left(X_{t}\right)$ with autocorrelation function

$$
R_{X}(\tau)=\frac{1}{2} e^{-|\tau|}
$$

Suppose $\left(X_{t}\right)$ is passed through a linear time-invariant system with transfer function

$$
H(\omega)=\frac{1}{3+j \omega}
$$

to produce the output process $\left(Y_{t}\right)$.
(a) Find $S_{Y X}(\omega)$ and use it to find $R_{Y X}(\tau)$.

Ans:

$$
S_{Y X}(\omega)=H(\omega) S_{X}(\omega)=\frac{1}{3+j \omega} \frac{1}{1+\omega^{2}}=\frac{1}{4} \frac{1}{1+j \omega}+\frac{1}{8} \frac{1}{1-j \omega}-\frac{1}{8} \frac{1}{3+j \omega}
$$

where the last equality follows from using partial fractions. Applying the inverse Fourier transform

$$
R_{Y X}(\tau)=\left(\frac{1}{4} e^{-\tau}-\frac{1}{8} e^{-3 \tau}\right) \mathbb{1}_{\{\tau \geq 0\}}+\frac{1}{8} e^{\tau} \mathbb{1}_{\{\tau<0\}}
$$

(b) Find $S_{Y}(\omega)$ and use it to find $R_{Y}(\tau)$.

Ans: $S_{Y}(\omega)=S_{X}(\omega)|H(\omega)|^{2}$. Using the Fourier transform pairs given to you

$$
S_{Y}(\omega)=\frac{1}{9+\omega^{2}} \frac{1}{1+\omega^{2}}=\frac{1}{8}\left[\frac{1}{1+\omega^{2}}-\frac{1}{9+\omega^{2}}\right]=\frac{1}{8}\left[\frac{1}{2} \frac{2}{1+\omega^{2}}-\frac{1}{6} \frac{6}{9+\omega^{2}}\right]
$$

and therefore

$$
R_{Y}(\tau)=\frac{1}{16} e^{-|\tau|}-\frac{1}{48} e^{-3|\tau|}
$$

(c) Find the LMMSE estimate $\hat{E}\left[X_{2} \mid Y_{1}\right]$.

Ans: $\mathrm{E}\left[X_{2} Y_{1}\right]=\mathrm{E}\left[Y_{1} X_{2}\right]=R_{Y X}(-1)=\frac{1}{8} e^{-1}$ and $\operatorname{Var}\left(Y_{1}\right)=R_{Y}(0)=\frac{1}{24}$. Thus

$$
\hat{\mathrm{E}}\left[X_{2} \mid Y_{1}\right]=0+\frac{1}{8} e^{-1} 24\left(Y_{1}-0\right)=3 e^{-1} Y_{1}
$$

7. (Extra credit - attempt only if you have time; I will not grade your answer if you have not finished the rest of the exam)
The Cliff-Hanger. A drunken man is near a cliff. From where he stands, one step toward the cliff would send him over the edge. He takes a random step either towards or away from the cliff. At any step, his probability of taking a step away from the cliff is p, and of a step towards the cliff is $(1-p)$. Find the probability that he will escape unharmed as a function of p, for the entire range $0 \leq p \leq 1$.
Ans: This is essentially the Gambler's ruin problem with initial wealth of $k=1$ and goal of $b=\infty$. It is easier to calculate the probability that the man will fall off the cliff, which we denote by ρ. Using the formula we derived in class, we get (for $p \neq \frac{1}{2}$)

$$
\rho=\lim _{b \rightarrow \infty} \frac{\left(\frac{1-p}{p}\right)-\left(\frac{1-p}{p}\right)^{b}}{1-\left(\frac{1-p}{p}\right)^{b}}
$$

If $0 \leq p<\frac{1}{2},\left(\frac{1-p}{p}\right)^{b}$ converges to ∞ as $b \rightarrow \infty$, which means that $\rho=1$.
If $\frac{1}{2}<p \leq 1,\left(\frac{1-p}{p}\right)^{b}$ converges to 0 as $b \rightarrow \infty$, which means that $\rho=\frac{1-p}{p}$.
For $p=\frac{1}{2}$, we use the boundary conditions to get $\rho=\lim _{b \rightarrow \infty} 1-\frac{1}{b}=1$.
We can also solve the problem directly without using the Gambler's ruin solution. Note that the probability of falling off the cliff starting two steps away is simply ρ^{2}. Thus $\rho=(1-p)+\rho^{2} p$, which we can solve to get $\rho=1$ or $\rho=(1-p) / p$. If $p<\frac{1}{2}$, the second solution is impossible since ρ has to be ≤ 1. For $p=1$, it is clear that $\rho=0$. Now, we can argue that ρ should be continuous in p to conclude that for $p \geq \frac{1}{2}$, $\rho=(1-p) / p$.

