
ECE 534 Fall 2009

December 16, 2009

Solutions to Final Exam

1. (24 pts, equally weighted parts) True or False.

(a) If U1, U2, . . . , is a sequence i.i.d. Unif[0,1] random variables and Xn = (Un)n, n ≥ 1, then
Xn converges in probability as n→∞.

Ans: True. In fact Xn
m.s.→ 0, since E[X2

n] = E[U2n
n ] = 1/(2n+ 1)→ 0 as n→∞.

(b) Suppose E[X2
n] <∞, for all n. If Xn

p.→ c, where c is a deterministic constant, then Xn
m.s.→ c

as well.

Ans: False. Consider Ω = [0, 1] with the uniform probability measure, and let Xn = n11{ω∈[0,1/n]}.

Then Xn
a.s.→ 0 and hence Xn

p.→ 0, but E[X2
n] = n→∞ as n→∞.

(c) If (Xt, t ∈ R) is Gaussian random process with covariance function CX(s, t) = st+ min{s, t},
then (Xt) cannot be a Markov process.

Ans: False. A Gauss-Markov process needs to satisfy, for r < s < t

CX(r, t) =
CX(r, s) CX(s, t)

CX(s, s)

It is easy to check that the given covariance function does satisfy the condition and is indeed Markov.

(d) If X and Y are jointly Gaussian random variables with finite second moments, then

E[(X − E[X|Y ])2] = E[(X − Ê[X|Y, Y 2])2]

Ans: True. Since X and Y are jointly Gaussian, the MMSE estimate is linear. So adding a quadratic

term to the LMMSE estimator cannot decrease the MSE below that obtained by just having the linear

term.

(e) The function R(τ) = | sin(τ)| is a valid auto-correlation function for a WSS process.

Ans: False. R(0) = 0 < R(π/2) = 1.

(f) The function S(ω) = e−|ω|| sin(ω)| is a valid power spectral density for a WSS process.

Ans: True. Since S(ω) is real-valued and ≥ 0 for all ω.

(g) A time-homogenous discrete-state Markov process (Xt) satisfies π(t) = π for some distribu-
tion π. Then (Xt) must be a (strictly) stationary process.

Ans: True. For any n and t1 < t2 < · · · < tn, the joint distribution of Xt1 , Xt2 , . . . , Xtn depends on

the marginal of Xt1 and the transition matrices H(t1, t2), H(t2, t3), . . .H(tn−1, tn), all of which are

invariant if we replace ti by ti + τ , i = 1, 2, . . . , n.

(h) For zero-mean jointly WSS (Xt) and (Yt), the noncausal Wiener filter for optimum linear
estimation of Xt given {Ys : s ∈ R} is necessarily time-invariant.

Ans: True. It is easy to see that the linear Kernel h(u, v) for optimum estimation of Xt given
{Ys : s ∈ R} must be the same that for estimation of Xt+τ from {Ys : s ∈ R} = {Ys+τ : s ∈ R}, which
means that h(u, v) = h(u+ τ, v + τ) for all τ ∈ R.
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2. (12 pts) CLT and Chernoff Bound. Let {Xk : k ≥ 0} be a sequence of i.i.d. random variables
with

P{Xk = −1} =
1

4
P{Xk = 0} =

1

2
P{Xk = 1} =

1

4

Suppose Sn =
∑n

k=1Xk.

(a) Find MX(θ), the moment generating function of Xk.

Ans: MX(θ) = E[eθXn ] = 1
4 (eθ + e−θ) + 1

2 .

(b) Use the Central Limit Theorem to find an approximation for P{S100 ≥ 50} in terms of the
Q(·) function.

Ans: µ = E[Xn] = 0 and σ2 = Var(Xn) = E[X2
n] = 1

2 . Thus, by the Central Limit Theorem,
(S100/(10σ) is approximately N (0, 1). Therefore,

P{S100 > 50} = P

{
S100

10σ
>

50

10σ

}
≈ Q

(
5
√

2
)

(c) Now use the Chernoff Bound to find a bound on P{S100 ≥ 50}.
Ans: By the Chernoff Bound,

P{S100 ≥ 50} = P

{
S100

100
≥ 1

2

}
≤ e−100 `(0.5)

where `(0.5) is obtained by maximizing

0.5 θ − lnMX(θ) = 0.5θ − ln(2 + eθ + e−θ) + ln(4)

Taking the derivative and setting it equal to zero, we obtain that the optimizing θ∗ satisfies

0.5 =
eθ

∗ − e−θ∗

2 + eθ∗ + e−θ∗

Setting x = eθ
∗

reduces the above equation to the quadratic x2 − 2x− 3 = 0, which has the solutions
x = 3 and x = −1. Since x has to be positive, we conclude that x = 3 =⇒ θ∗ = ln 3. Thus
`(0.5) = 0.5 ln 3− ln(4/3) = ln(3

√
3/4). Therefore,

P{S100 ≥ 50} ≤

(
3
√

3

4

)−100

3. (14 pts) Linear Innovations. Let (Yk : k ≥ 1) be a discrete-time zero-mean WSS random process
with ACF

RY (k) = (0.5)|k|

(a) Find the linear innovations sequence Ỹ1, Ỹ2, Ỹ3 corresponding to the first three samples of the
process Y1, Y2, Y3.

Ans: Ỹ1 = Y1, and Ỹ2 = Y2 − Ê[Y2|Ỹ1] = Y2 − Ê[Y2|Y1]. Now, Var(Y1) = 1 and Cov(Y2, Y1) =

0.5. Thus Ê[Y2|Y1] = 0.5Y1, and Ỹ2 = Y2 − 0.5Y1. Now by linear innovations applied recursively,

Ỹ3 = Y3−(Ê[Y3|Ỹ2]+ Ê[Y3|Ỹ1]). Since Cov(Y3, Y1) = 0.25, Ê[Y3|Ỹ1] = Ê[Y3|Y1] = 0.25Y1. Furthermore,
Var(Ỹ2) = Var(Y2)+0.25Var(Y1)−E[Y1Y2] = 3

4 , and Cov(Y3, Ỹ2) = E[Y3Y2]−0.5E[Y3Y1] = 0.5−0.125 =
3
8 , which means that Ê[Y3|Ỹ2] = 3

8
4
3 Ỹ2 = 0.5Ỹ2. Thus Ỹ3 = Y3−0.25Y1−0.5(Y2−0.5Y1) = Y3−0.5Y2.
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(b) Now suppose X is a zero mean random variable with finite second moment satisfying

E[XY1] = 1, E[XY2] = 0.5, E[XY3] = 0.25

Find the LMMSE estimate Ê[X|Y1, Y2, Y3].
Ans: Ê[X|Y1, Y2, Y3] = Ê[X|Ỹ1] + Ê[X|Ỹ2] + Ê[X|Ỹ3]. Now, Ê[X|Ỹ1] = Ê[X|Y1]E[XY1]Var(Y1)−1Y1 =

Y1. Furthermore, it is easy to see that E[XỸ2] = E[XỸ3] = 0, which means that Ê[X|Ỹ2] = Ê[X|Ỹ3] =

0. Thus Ê[X|Y1, Y2, Y3] = Y1.

4. (16 pts) Poisson process. Let (Nt : t ≥ 0) be a Poisson process with parameter λ = 1.

(a) Find P{N3 ≤ 2 | N1 ≥ 1}.
Ans:

P{N3 ≤ 2 | N1 ≥ 1} =
P{N3 ≤ 2 , N1 ≥ 1}

P{N1 ≥ 1}
Now, P{N1 ≥ 1} = 1−P{N1 = 0} = 1− e−1, and using the independent increment property of (Nt),

P{N3 ≤ 2 , N1 ≥ 1} = P{N1 = 2 , N3 −N1 = 0}+ P{N1 = 1 , N3 −N1 ≤ 1} = · · · = 7

2
e−3

Thus P{N3 ≤ 2 | N1 ≥ 1} = 7
2

e−3

1−e−1

(b) Find P{N1 ≥ 1 | N3 ≤ 2}.
Ans: P{N3 ≤ 2} = e−3 + 3e−3 + 9

2e
−3 = 17

2 e
−3. Thus P{N1 ≥ 1 | N3 ≤ 2} = 7

17 .

(c) Now suppose we define the random variable Z via the m.s. integral

Z =

∫ 1

0
Ntdt

Find the LMMSE estimate Ê[N2|Z].
Ans: The autocovariance function of (Nt) is given by CN (s, t) = min(s, t).

E[Z] =

∫ 1

t=0

tdt =
1

2
, Var(Z) =

∫ 1

0

∫ 1

0

CN (s, t)dtds =

∫ 1

0

∫ 1

0

min(s, t) dtds =
1

3

Furthermore,

Cov(N2, Z) =

∫ 1

t=0

CN (t, 2)dt =

∫ 1

t=0

tdt =
1

2

Thus Ê[N2|Z] = 2 + 1
2 3 (Z − 1

2 ) = 3
2Z + 5

4 .

5. (20 pts) FSMP. Consider a time-homogeneous discrete-time Markov process (Xk : k ≥ 0) with
state space S = {−1, 0, 1} and one-step probability transition matrix P given by

P =

0.2 0.8 0
0.4 0.2 0.4
0 0.8 0.2


(a) Find the equilibrium distribution π.

Ans: Using the fact that π = πP and π e = 1, it is easy to show that π−1 = π1 = 1
4 and π0 = 1

2 .

For the remaining parts, assume that X0 has the equilibrium distribution.
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(b) Determine whether or not (Xk) is a martingale.

Ans: No. For example, E[X2|X1 = −1] = (0.2)(−1) + (0.8)(0) = −0.2 6= −1.

(c) Find the joint distribution of X1 and X2. (You may want to put the values in a table.)

Ans: P{X2 = j,X1 = i} = πiPi,j . Thus the joint pmf is described by table

−1 0 1
−1 0.05 0.2 0
0 0.2 00.1 0.2
1 0 0.2 0.05

(d) Let the discrete-time process (Yk : k ≥ 0) be defined by

Yk = X1 + kX2, k ≥ 0

Find the mean and autocorrelation function of (Yk).

Ans: E[X1] = E[X2] = 0, E[X2
1 ] = E[X2

2 ] = 1
2 , and E[X1X2] = (−1)(−1)(0.05) + (1)(1)(0.05) = 0.1.

Thus

E[Yk] = 0, RY (k,m) = E[YkYm] =
1

2
+
km

2
+ (0.1)(k +m)

(e) Find E[Y2|Y1, Y0].
Ans: Y2 = X1 + 2X2 = 2Y1 − Y0. Thus E[Y2|Y1, Y0] = 2Y1 − Y0.

(f) Determine whether or not (Yk) is a Markov process.

Ans: No, since E[Y2|Y1, Y0] depends on both Y1 and Y0. In particular

E[Y2|Y1 = 1, Y0 = 1] = 1 6= E[Y2|Y1 = 1] = 1 + E[X2|Y1 = 1] = 1 +
1

2

6. (14 pts) Filtering. Consider a zero-mean WSS process (Xt) with autocorrelation function

RX(τ) =
1

2
e−|τ |

Suppose (Xt) is passed through a linear time-invariant system with transfer function

H(ω) =
1

3 + jω

to produce the output process (Yt).

(a) Find SY X(ω) and use it to find RY X(τ).

Ans:

SY X(ω) = H(ω)SX(ω) =
1

3 + jω

1

1 + ω2
=

1

4

1

1 + jω
+

1

8

1

1− jω
− 1

8

1

3 + jω

where the last equality follows from using partial fractions. Applying the inverse Fourier transform

RY X(τ) =

(
1

4
e−τ − 1

8
e−3τ

)
11{τ≥0} +

1

8
eτ11{τ<0}
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(b) Find SY (ω) and use it to find RY (τ).

Ans: SY (ω) = SX(ω)|H(ω)|2. Using the Fourier transform pairs given to you

SY (ω) =
1

9 + ω2

1

1 + ω2
=

1

8

[
1

1 + ω2
− 1

9 + ω2

]
=

1

8

[
1

2

2

1 + ω2
− 1

6

6

9 + ω2

]
and therefore

RY (τ) =
1

16
e−|τ | − 1

48
e−3|τ |

(c) Find the LMMSE estimate Ê[X2|Y1].
Ans: E[X2Y1] = E[Y1X2] = RY X(−1) = 1

8e
−1 and Var(Y1) = RY (0) = 1

24 . Thus

Ê[X2|Y1] = 0 +
1

8
e−124(Y1 − 0) = 3e−1Y1

7. (Extra credit – attempt only if you have time; I will not grade your answer if you have not finished
the rest of the exam)

The Cliff-Hanger. A drunken man is near a cliff. From where he stands, one step toward the cliff
would send him over the edge. He takes a random step either towards or away from the cliff. At
any step, his probability of taking a step away from the cliff is p, and of a step towards the cliff is
(1− p). Find the probability that he will escape unharmed as a function of p, for the entire range
0 ≤ p ≤ 1.

Ans: This is essentially the Gambler’s ruin problem with initial wealth of k = 1 and goal of b = ∞. It
is easier to calculate the probability that the man will fall off the cliff, which we denote by ρ. Using the
formula we derived in class, we get (for p 6= 1

2 )

ρ = lim
b→∞

(
1−p
p

)
−
(

1−p
p

)b
1−

(
1−p
p

)b
If 0 ≤ p < 1

2 ,
(

1−p
p

)b
converges to ∞ as b→∞, which means that ρ = 1.

If 1
2 < p ≤ 1,

(
1−p
p

)b
converges to 0 as b→∞, which means that ρ = 1−p

p .

For p = 1
2 , we use the boundary conditions to get ρ = limb→∞ 1− 1

b = 1.

We can also solve the problem directly without using the Gambler’s ruin solution. Note that the probability
of falling off the cliff starting two steps away is simply ρ2. Thus ρ = (1 − p) + ρ2p, which we can solve to
get ρ = 1 or ρ = (1 − p)/p. If p < 1

2 , the second solution is impossible since ρ has to be ≤ 1. For p = 1,
it is clear that ρ = 0. Now, we can argue that ρ should be continuous in p to conclude that for p ≥ 1

2 ,
ρ = (1− p)/p.
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