December 16, 2009

Solutions to Final Exam

- 1. (24 pts, equally weighted parts) True or False.
 - (a) If U₁, U₂,..., is a sequence i.i.d. Unif[0,1] random variables and X_n = (U_n)ⁿ, n ≥ 1, then X_n converges in probability as n → ∞.
 Ans: True. In fact X_n ^{m.s.} 0, since E[X_n²] = E[U_n²ⁿ] = 1/(2n + 1) → 0 as n → ∞.
 - (b) Suppose $\mathsf{E}[X_n^2] < \infty$, for all n. If $X_n \xrightarrow{p} c$, where c is a deterministic constant, then $X_n \xrightarrow{m.s.} c$ as well.

Ans: False. Consider $\Omega = [0, 1]$ with the uniform probability measure, and let $X_n = n \mathbb{1}_{\{\omega \in [0, 1/n]\}}$. Then $X_n \xrightarrow{a.s.} 0$ and hence $X_n \xrightarrow{p.} 0$, but $\mathsf{E}[X_n^2] = n \to \infty$ as $n \to \infty$.

(c) If $(X_t, t \in \mathbb{R})$ is Gaussian random process with covariance function $C_X(s, t) = st + \min\{s, t\}$, then (X_t) cannot be a Markov process.

Ans: False. A Gauss-Markov process needs to satisfy, for r < s < t

$$C_X(r,t) = \frac{C_X(r,s) C_X(s,t)}{C_X(s,s)}$$

It is easy to check that the given covariance function does satisfy the condition and is indeed Markov.

(d) If X and Y are jointly Gaussian random variables with finite second moments, then

$$\mathsf{E}[(X - \mathsf{E}[X|Y])^2] = \mathsf{E}[(X - \hat{\mathsf{E}}[X|Y, Y^2])^2]$$

Ans: True. Since X and Y are jointly Gaussian, the MMSE estimate is linear. So adding a quadratic term to the LMMSE estimator cannot decrease the MSE below that obtained by just having the linear term.

- (e) The function R(τ) = |sin(τ)| is a valid auto-correlation function for a WSS process.
 Ans: False. R(0) = 0 < R(π/2) = 1.
- (f) The function $S(\omega) = e^{-|\omega|} |\sin(\omega)|$ is a valid power spectral density for a WSS process. **Ans:** True. Since $S(\omega)$ is real-valued and ≥ 0 for all ω .
- (g) A time-homogenous discrete-state Markov process (X_t) satisfies <u>π</u>(t) = <u>π</u> for some distribution <u>π</u>. Then (X_t) must be a (strictly) stationary process.
 Ans: True For any n and t₁ < t₂ < ... < t_n the joint distribution of X_t. X_t = X_t depends on

Ans: True. For any *n* and $t_1 < t_2 < \cdots < t_n$, the joint distribution of $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ depends on the marginal of X_{t_1} and the transition matrices $H(t_1, t_2), H(t_2, t_3), \ldots H(t_{n-1}, t_n)$, all of which are invariant if we replace t_i by $t_i + \tau$, $i = 1, 2, \ldots, n$.

(h) For zero-mean jointly WSS (X_t) and (Y_t) , the noncausal Wiener filter for optimum linear estimation of X_t given $\{Y_s : s \in \mathbb{R}\}$ is necessarily *time-invariant*. **Ans:** True. It is easy to see that the linear Kernel h(u, v) for optimum estimation of X_t given $\{Y_s : s \in \mathbb{R}\}$ must be the same that for estimation of $X_{t+\tau}$ from $\{Y_s : s \in \mathbb{R}\} = \{Y_{s+\tau} : s \in \mathbb{R}\}$, which means that $h(u, v) = h(u + \tau, v + \tau)$ for all $\tau \in \mathbb{R}$. 2. (12 pts) *CLT and Chernoff Bound.* Let $\{X_k : k \ge 0\}$ be a sequence of i.i.d. random variables with

$$\mathsf{P}{X_k = -1} = \frac{1}{4}$$
 $\mathsf{P}{X_k = 0} = \frac{1}{2}$ $\mathsf{P}{X_k = 1} = \frac{1}{4}$

Suppose $S_n = \sum_{k=1}^n X_k$.

- (a) Find $M_X(\theta)$, the moment generating function of X_k . **Ans:** $M_X(\theta) = \mathsf{E}[e^{\theta X_n}] = \frac{1}{4}(e^{\theta} + e^{-\theta}) + \frac{1}{2}$.
- (b) Use the Central Limit Theorem to find an approximation for P{S₁₀₀ ≥ 50} in terms of the Q(·) function.
 Ans: μ = E[X_n] = 0 and σ² = Var(X_n) = E[X_n²] = 1/2. Thus, by the Central Limit Theorem, (S₁₀₀/(10σ) is approximately N(0, 1). Therefore,

$$\mathsf{P}\{S_{100} > 50\} = \mathsf{P}\left\{\frac{S_{100}}{10\sigma} > \frac{50}{10\sigma}\right\} \approx Q\left(5\sqrt{2}\right)$$

(c) Now use the Chernoff Bound to find a bound on $P\{S_{100} \ge 50\}$. Ans: By the Chernoff Bound,

$$\mathsf{P}\{S_{100} \ge 50\} = \mathsf{P}\left\{\frac{S_{100}}{100} \ge \frac{1}{2}\right\} \le e^{-100\ \ell(0.5)}$$

where $\ell(0.5)$ is obtained by maximizing

$$0.5\,\theta - \ln M_X(\theta) = 0.5\theta - \ln(2 + e^{\theta} + e^{-\theta}) + \ln(4)$$

Taking the derivative and setting it equal to zero, we obtain that the optimizing θ^* satisfies

$$0.5 = \frac{e^{\theta^*} - e^{-\theta^*}}{2 + e^{\theta^*} + e^{-\theta^*}}$$

Setting $x = e^{\theta^*}$ reduces the above equation to the quadratic $x^2 - 2x - 3 = 0$, which has the solutions x = 3 and x = -1. Since x has to be positive, we conclude that $x = 3 \implies \theta^* = \ln 3$. Thus $\ell(0.5) = 0.5 \ln 3 - \ln(4/3) = \ln(3\sqrt{3}/4)$. Therefore,

$$\mathsf{P}\{S_{100} \ge 50\} \le \left(\frac{3\sqrt{3}}{4}\right)^{-100}$$

3. (14 pts) Linear Innovations. Let $(Y_k : k \ge 1)$ be a discrete-time zero-mean WSS random process with ACF

$$R_Y(k) = (0.5)^{|k|}$$

(a) Find the linear innovations sequence $\tilde{Y}_1, \tilde{Y}_2, \tilde{Y}_3$ corresponding to the first three samples of the process Y_1, Y_2, Y_3 .

Ans: $\tilde{Y}_1 = Y_1$, and $\tilde{Y}_2 = Y_2 - \hat{\mathsf{E}}[Y_2|\tilde{Y}_1] = Y_2 - \hat{\mathsf{E}}[Y_2|Y_1]$. Now, $\operatorname{Var}(Y_1) = 1$ and $\operatorname{Cov}(Y_2, Y_1) = 0.5$. Thus $\hat{\mathsf{E}}[Y_2|Y_1] = 0.5Y_1$, and $\tilde{Y}_2 = Y_2 - 0.5Y_1$. Now by linear innovations applied recursively, $\tilde{Y}_3 = Y_3 - (\hat{\mathsf{E}}[Y_3|\tilde{Y}_2] + \hat{\mathsf{E}}[Y_3|\tilde{Y}_1])$. Since $\operatorname{Cov}(Y_3, Y_1) = 0.25$, $\hat{\mathsf{E}}[Y_3|\tilde{Y}_1] = \hat{\mathsf{E}}[Y_3|Y_1] = 0.25Y_1$. Furthermore, $\operatorname{Var}(\tilde{Y}_2) = \operatorname{Var}(Y_2) + 0.25\operatorname{Var}(Y_1) - \operatorname{E}[Y_1Y_2] = \frac{3}{4}$, and $\operatorname{Cov}(Y_3, \tilde{Y}_2) = \operatorname{E}[Y_3Y_2] - 0.5\operatorname{E}[Y_3Y_1] = 0.5 - 0.125 = \frac{3}{8}$, which means that $\hat{\mathsf{E}}[Y_3|\tilde{Y}_2] = \frac{3}{8}\frac{4}{3}\tilde{Y}_2 = 0.5\tilde{Y}_2$. Thus $\tilde{Y}_3 = Y_3 - 0.25Y_1 - 0.5(Y_2 - 0.5Y_1) = Y_3 - 0.5Y_2$.

©V. V. Veeravalli, 2009

(b) Now suppose X is a zero mean random variable with finite second moment satisfying

$$\mathsf{E}[XY_1] = 1, \quad \mathsf{E}[XY_2] = 0.5, \quad \mathsf{E}[XY_3] = 0.25$$

Find the LMMSE estimate $\hat{\mathsf{E}}[X|Y_1, Y_2, Y_3]$.

Ans: $\hat{\mathsf{E}}[X|Y_1, Y_2, Y_3] = \hat{\mathsf{E}}[X|\tilde{Y}_1] + \hat{\mathsf{E}}[X|\tilde{Y}_2] + \hat{\mathsf{E}}[X|\tilde{Y}_3]$. Now, $\hat{\mathsf{E}}[X|\tilde{Y}_1] = \hat{\mathsf{E}}[X|Y_1]\mathsf{E}[XY_1]\mathsf{Var}(Y_1)^{-1}Y_1 = Y_1$. Furthermore, it is easy to see that $\mathsf{E}[X\tilde{Y}_2] = \mathsf{E}[X\tilde{Y}_3] = 0$, which means that $\hat{\mathsf{E}}[X|\tilde{Y}_2] = \hat{\mathsf{E}}[X|\tilde{Y}_3] = 0$. Thus $\hat{\mathsf{E}}[X|Y_1, Y_2, Y_3] = Y_1$.

- 4. (16 pts) Poisson process. Let $(N_t : t \ge 0)$ be a Poisson process with parameter $\lambda = 1$.
 - (a) Find $\mathsf{P}\{N_3 \le 2 \mid N_1 \ge 1\}$. Ans:

$$\mathsf{P}\{N_3 \le 2 \mid N_1 \ge 1\} = \frac{\mathsf{P}\{N_3 \le 2, N_1 \ge 1\}}{\mathsf{P}\{N_1 \ge 1\}}$$

Now, $\mathsf{P}\{N_1 \ge 1\} = 1 - \mathsf{P}\{N_1 = 0\} = 1 - e^{-1}$, and using the independent increment property of (N_t) ,

$$\mathsf{P}\{N_3 \le 2, N_1 \ge 1\} = \mathsf{P}\{N_1 = 2, N_3 - N_1 = 0\} + \mathsf{P}\{N_1 = 1, N_3 - N_1 \le 1\} = \dots = \frac{1}{2}e^{-3}$$

Thus
$$\mathsf{P}\{N_3 \le 2 \mid N_1 \ge 1\} = \frac{7}{2} \frac{e^{-3}}{1 - e^{-1}}$$

(b) Find $P\{N_1 \ge 1 \mid N_3 \le 2\}$. **Ans:** $P\{N_3 \le 2\} = e^{-3} + 3e^{-3} + \frac{9}{2}e^{-3} = \frac{17}{2}e^{-3}$. Thus $P\{N_1 \ge 1 \mid N_3 \le 2\} = \frac{7}{17}$.

(c) Now suppose we define the random variable Z via the m.s. integral

$$Z = \int_0^1 N_t dt$$

Find the LMMSE estimate
$$\hat{\mathsf{E}}[N_2|Z]$$
.

Ans: The autocovariance function of (N_t) is given by $C_N(s,t) = \min(s,t)$.

$$\mathsf{E}[Z] = \int_{t=0}^{1} t dt = \frac{1}{2}, \quad \operatorname{Var}(Z) = \int_{0}^{1} \int_{0}^{1} C_{N}(s,t) dt ds = \int_{0}^{1} \int_{0}^{1} \min(s,t) \, dt ds = \frac{1}{3}$$

Furthermore,

$$\operatorname{Cov}(N_2, Z) = \int_{t=0}^1 C_N(t, 2) dt = \int_{t=0}^1 t dt = \frac{1}{2}$$

Thus $\hat{\mathsf{E}}[N_2|Z] = 2 + \frac{1}{2} \ 3 \ (Z - \frac{1}{2}) = \frac{3}{2}Z + \frac{5}{4}.$

5. (20 pts) *FSMP*. Consider a time-homogeneous discrete-time Markov process $(X_k : k \ge 0)$ with state space $S = \{-1, 0, 1\}$ and one-step probability transition matrix P given by

$$P = \begin{bmatrix} 0.2 & 0.8 & 0\\ 0.4 & 0.2 & 0.4\\ 0 & 0.8 & 0.2 \end{bmatrix}$$

(a) Find the equilibrium distribution $\underline{\pi}$.

Ans: Using the fact that $\underline{\pi} = \underline{\pi}P$ and $\underline{\pi} = \underline{n}$, it is easy to show that $\pi_{-1} = \pi_1 = \frac{1}{4}$ and $\pi_0 = \frac{1}{2}$. For the remaining parts, assume that X_0 has the equilibrium distribution.

- (b) Determine whether or not (X_k) is a martingale. **Ans:** No. For example, $\mathsf{E}[X_2|X_1 = -1] = (0.2)(-1) + (0.8)(0) = -0.2 \neq -1$.
- (c) Find the joint distribution of X_1 and X_2 . (You may want to put the values in a table.) **Ans:** $P\{X_2 = j, X_1 = i\} = \pi_i P_{i,j}$. Thus the joint pmf is described by table

	-1	0	1
-1	0.05	0.2	0
0	0.2	00.1	0.2
1	0	0.2	0.05

(d) Let the discrete-time process $(Y_k : k \ge 0)$ be defined by

$$Y_k = X_1 + kX_2, \quad k \ge 0$$

Find the mean and autocorrelation function of (Y_k) .

Ans: $\mathsf{E}[X_1] = \mathsf{E}[X_2] = 0$, $\mathsf{E}[X_1^2] = \mathsf{E}[X_2^2] = \frac{1}{2}$, and $\mathsf{E}[X_1X_2] = (-1)(-1)(0.05) + (1)(1)(0.05) = 0.1$. Thus

$$\mathsf{E}[Y_k] = 0, \quad R_Y(k,m) = \mathsf{E}[Y_k Y_m] = \frac{1}{2} + \frac{km}{2} + (0.1)(k+m)$$

(e) Find $\mathsf{E}[Y_2|Y_1, Y_0]$.

Ans: $Y_2 = X_1 + 2X_2 = 2Y_1 - Y_0$. Thus $\mathsf{E}[Y_2|Y_1, Y_0] = 2Y_1 - Y_0$.

(f) Determine whether or not (Y_k) is a Markov process. Ans: No, since $\mathsf{E}[Y_2|Y_1, Y_0]$ depends on both Y_1 and Y_0 . In particular

$$\mathsf{E}[Y_2|Y_1 = 1, Y_0 = 1] = 1 \neq \mathsf{E}[Y_2|Y_1 = 1] = 1 + \mathsf{E}[X_2|Y_1 = 1] = 1 + \frac{1}{2}$$

6. (14 pts) Filtering. Consider a zero-mean WSS process (X_t) with autocorrelation function

$$R_X(\tau) = \frac{1}{2}e^{-|\tau|}$$

Suppose (X_t) is passed through a linear time-invariant system with transfer function

$$H(\omega) = \frac{1}{3+j\omega}$$

to produce the output process (Y_t) .

2

(a) Find $S_{YX}(\omega)$ and use it to find $R_{YX}(\tau)$. Ans:

$$S_{YX}(\omega) = H(\omega)S_X(\omega) = \frac{1}{3+j\omega}\frac{1}{1+\omega^2} = \frac{1}{4}\frac{1}{1+j\omega} + \frac{1}{8}\frac{1}{1-j\omega} - \frac{1}{8}\frac{1}{3+j\omega}$$

where the last equality follows from using partial fractions. Applying the inverse Fourier transform

$$R_{YX}(\tau) = \left(\frac{1}{4}e^{-\tau} - \frac{1}{8}e^{-3\tau}\right) \mathbb{1}_{\{\tau \ge 0\}} + \frac{1}{8}e^{\tau} \mathbb{1}_{\{\tau < 0\}}$$

(b) Find $S_Y(\omega)$ and use it to find $R_Y(\tau)$.

Ans: $S_Y(\omega) = S_X(\omega)|H(\omega)|^2$. Using the Fourier transform pairs given to you

$$S_Y(\omega) = \frac{1}{9+\omega^2} \frac{1}{1+\omega^2} = \frac{1}{8} \left[\frac{1}{1+\omega^2} - \frac{1}{9+\omega^2} \right] = \frac{1}{8} \left[\frac{1}{2} \frac{2}{1+\omega^2} - \frac{1}{6} \frac{6}{9+\omega^2} \right]$$

and therefore

$$R_Y(\tau) = \frac{1}{16}e^{-|\tau|} - \frac{1}{48}e^{-3|\tau|}$$

(c) Find the LMMSE estimate $\hat{\mathsf{E}}[X_2|Y_1]$. **Ans:** $\mathsf{E}[X_2Y_1] = \mathsf{E}[Y_1X_2] = R_{YX}(-1) = \frac{1}{8}e^{-1}$ and $\operatorname{Var}(Y_1) = R_Y(0) = \frac{1}{24}$. Thus

$$\hat{\mathsf{E}}[X_2|Y_1] = 0 + \frac{1}{8}e^{-1}24(Y_1 - 0) = 3e^{-1}Y_1$$

7. (Extra credit – attempt only if you have time; I will not grade your answer if you have not finished the rest of the exam)

The Cliff-Hanger. A drunken man is near a cliff. From where he stands, one step toward the cliff would send him over the edge. He takes a random step either towards or away from the cliff. At any step, his probability of taking a step away from the cliff is p, and of a step towards the cliff is (1-p). Find the probability that he will escape unharmed as a function of p, for the entire range $0 \le p \le 1$.

Ans: This is essentially the Gambler's ruin problem with initial wealth of k = 1 and goal of $b = \infty$. It is easier to calculate the probability that the man will fall off the cliff, which we denote by ρ . Using the formula we derived in class, we get (for $p \neq \frac{1}{2}$)

$$\rho = \lim_{b \to \infty} \frac{\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^b}{1 - \left(\frac{1-p}{p}\right)^b}$$

If $0 \le p < \frac{1}{2}$, $\left(\frac{1-p}{p}\right)^b$ converges to ∞ as $b \to \infty$, which means that $\rho = 1$. If $\frac{1}{2} , <math>\left(\frac{1-p}{p}\right)^b$ converges to 0 as $b \to \infty$, which means that $\rho = \frac{1-p}{p}$. For $p = \frac{1}{2}$, we use the boundary conditions to get $\rho = \lim_{b \to \infty} 1 - \frac{1}{b} = 1$.

We can also solve the problem directly without using the Gambler's run solution. Note that the probability of falling off the cliff starting two steps away is simply ρ^2 . Thus $\rho = (1-p) + \rho^2 p$, which we can solve to get $\rho = 1$ or $\rho = (1-p)/p$. If $p < \frac{1}{2}$, the second solution is impossible since ρ has to be ≤ 1 . For p = 1, it is clear that $\rho = 0$. Now, we can argue that ρ should be continuous in p to conclude that for $p \geq \frac{1}{2}$, $\rho = (1-p)/p$.