December 16, 2009

Final Exam

- You have 3 hours to complete this exam.
- Don't forget to put your name on the answer booklet.
- You are allowed 3 sheets of notes (8.5 " $\times 11$ ", both sides).
- Calculators laptop computers, PDA's, etc. are not permitted.
- Maximum possible score is 100 .
- Neatness counts, especially for partial credit towards incorrect solutions.
- You may find the following Fourier transform pairs to be useful:

$$
\text { For } a>0, \quad e^{-a t} \mathbb{1}_{\{t \geq 0\}} \leftrightarrow \frac{1}{a+j \omega}, \quad e^{a t} \mathbb{1}_{\{t<0\}} \leftrightarrow \frac{1}{a-j \omega} \quad \text { and } \quad e^{-a|t|} \leftrightarrow \frac{2 a}{a^{2}+\omega^{2}}
$$

1. (24 pts, equally weighted parts) True or False. Determine if the following statements are True or False. You need to justify your answer clearly to get credit - provide a short proof if you say the statement is True, and a counter-example if you say the statement is False. Just stating "True" or "False" without any justification will get zero credit.
(a) If U_{1}, U_{2}, \ldots, is a sequence i.i.d. Unif $[0,1]$ random variables and $X_{n}=\left(U_{n}\right)^{n}, n \geq 1$, then X_{n} converges in probability as $n \rightarrow \infty$.
(b) Suppose $\mathrm{E}\left[X_{n}^{2}\right]<\infty$, for all n. If $X_{n} \xrightarrow{p \text {. }} c$, where c is a deterministic constant, then $X_{n} \xrightarrow{\text { m.s. }} c$ as well.
(c) If $\left(X_{t}, t \in \mathbb{R}\right)$ is Gaussian random process with covariance function $C_{X}(s, t)=s t+\min \{s, t\}$, then $\left(X_{t}\right)$ cannot be a Markov process.
(d) If X and Y are jointly Gaussian random variables with finite second moments, then

$$
\mathrm{E}\left[(X-\mathrm{E}[X \mid Y])^{2}\right]=\mathrm{E}\left[\left(X-\hat{\mathrm{E}}\left[X \mid Y, Y^{2}\right]\right)^{2}\right]
$$

(e) The function $R(\tau)=|\sin (\tau)|$ is a valid auto-correlation function for a WSS process.
(f) The function $S(\omega)=e^{-|\omega|}|\sin (\omega)|$ is a valid power spectral density for a WSS process.
(g) A time-homogenous discrete-state Markov process $\left(X_{t}\right)$ satisfies $\underline{\pi}(t)=\underline{\pi}$ for some distribution $\underline{\pi}$. Then $\left(X_{t}\right)$ must be a (strictly) stationary process.
(h) For zero-mean jointly WSS $\left(X_{t}\right)$ and $\left(Y_{t}\right)$, the noncausal Wiener filter for optimum linear estimation of X_{t} given $\left\{Y_{s}: s \in \mathbb{R}\right\}$ is necessarily time-invariant.
2. (12 pts) CLT and Chernoff Bound. Let $\left\{X_{k}: k \geq 0\right\}$ be a sequence of i.i.d. random variables with

$$
\mathrm{P}\left\{X_{k}=-1\right\}=\frac{1}{4} \quad \mathrm{P}\left\{X_{k}=0\right\}=\frac{1}{2} \quad \mathrm{P}\left\{X_{k}=1\right\}=\frac{1}{4}
$$

Suppose $S_{n}=\sum_{k=1}^{n} X_{k}$.
(a) Find $M_{X}(\theta)$, the moment generating function of X_{k}.
(b) Use the Central Limit Theorem to find an approximation for $\mathrm{P}\left\{S_{100} \geq 50\right\}$ in terms of the $Q(\cdot)$ function.
(c) Now use the Chernoff Bound to find a bound on $\mathrm{P}\left\{S_{100} \geq 50\right\}$.
3. (14 pts) Linear Innovations. Let $\left(Y_{k}: k \geq 1\right)$ be a discrete-time zero-mean WSS random process with ACF

$$
R_{Y}(k)=(0.5)^{|k|}
$$

(a) Find the linear innovations sequence $\tilde{Y}_{1}, \tilde{Y}_{2}, \tilde{Y}_{3}$ corresponding to the first three samples of the process Y_{1}, Y_{2}, Y_{3}.
(b) Now suppose X is a zero mean random variable with finite second moment satisfying

$$
\mathrm{E}\left[X Y_{1}\right]=1, \quad \mathrm{E}\left[X Y_{2}\right]=0.5, \quad \mathrm{E}\left[X Y_{3}\right]=0.25
$$

Find the LMMSE estimate $\hat{\mathrm{E}}\left[X \mid Y_{1}, Y_{2}, Y_{3}\right]$.
4. (16 pts) Poisson process. Let $\left(N_{t}: t \geq 0\right)$ be a Poisson process with parameter $\lambda=1$.
(a) Find $\mathrm{P}\left\{N_{3} \leq 2 \mid N_{1} \geq 1\right\}$.
(b) Find $\mathrm{P}\left\{N_{1} \geq 1 \mid N_{3} \leq 2\right\}$.
(c) Now suppose we define the random variable Z via the m.s. integral

$$
Z=\int_{0}^{1} N_{t} d t
$$

Find the LMMSE estimate $\hat{\mathrm{E}}\left[N_{2} \mid Z\right]$.
5. (20 pts) FSMP. Consider a time-homogeneous discrete-time Markov process ($\left.X_{k}: k \geq 0\right)$ with state space $\mathcal{S}=\{-1,0,1\}$ and one-step probability transition matrix P given by

$$
P=\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0.2 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right]
$$

(a) Find the equilibrium distribution $\underline{\pi}$.

For the remaining parts, assume that X_{0} has the equilibrium distribution.
(b) Determine whether or not $\left(X_{k}\right)$ is a martingale.
(c) Find the joint distribution of X_{1} and X_{2}. (You may want to put the values in a table.)
(d) Let the discrete-time process $\left(Y_{k}: k \geq 0\right)$ be defined by

$$
Y_{k}=X_{1}+k X_{2}, \quad k \geq 0
$$

Find the mean and autocorrelation function of $\left(Y_{k}\right)$.
(e) Find $\mathrm{E}\left[Y_{2} \mid Y_{1}, Y_{0}\right]$.
(f) Determine whether or not $\left(Y_{k}\right)$ is a Markov process.
6. (14 pts) Filtering. Consider a zero-mean WSS process (X_{t}) with autocorrelation function

$$
R_{X}(\tau)=\frac{1}{2} e^{-|\tau|}
$$

Suppose $\left(X_{t}\right)$ is passed through a linear time-invariant system with transfer function

$$
H(\omega)=\frac{1}{3+j \omega}
$$

to produce the output process $\left(Y_{t}\right)$.
(a) Find $S_{Y X}(\omega)$ and use it to find $R_{Y X}(\tau)$.
(b) Find $S_{Y}(\omega)$ and use it to find $R_{Y}(\tau)$.
(c) Find the LMMSE estimate $\hat{\mathrm{E}}\left[X_{2} \mid Y_{1}\right]$.
7. (Extra credit - attempt only if you have time; I will not grade your answer if you have not finished the rest of the exam)
The Cliff-Hanger. A drunken man is near a cliff. From where he stands, one step toward the cliff would send him over the edge. He takes a random step either towards or away from the cliff. At any step, his probability of taking a step away from the cliff is p, and of a step towards the cliff is $(1-p)$. Find the probability that he will escape unharmed as a function of p, for the entire range $0 \leq p \leq 1$.

