ECE 534

December 16, 2009

Final Exam

- You have 3 hours to complete this exam.
- Don't forget to put your name on the answer booklet.
- You are allowed 3 sheets of notes $(8.5" \times 11", \text{ both sides})$.
- Calculators laptop computers, PDA's, etc. are not permitted.
- Maximum possible score is 100.
- Neatness counts, especially for partial credit towards incorrect solutions.
- You may find the following Fourier transform pairs to be useful:

For
$$a > 0$$
, $e^{-at} \mathbb{1}_{\{t \ge 0\}} \leftrightarrow \frac{1}{a+j\omega}$, $e^{at} \mathbb{1}_{\{t < 0\}} \leftrightarrow \frac{1}{a-j\omega}$ and $e^{-a|t|} \leftrightarrow \frac{2a}{a^2 + \omega^2}$

- 1. (24 pts, equally weighted parts) *True or False*. Determine if the following statements are True or False. You need to justify your answer clearly to get credit provide a short proof if you say the statement is True, and a counter-example if you say the statement is False. Just stating "True" or "False" without any justification will get zero credit.
 - (a) If U_1, U_2, \ldots , is a sequence i.i.d. Unif[0,1] random variables and $X_n = (U_n)^n$, $n \ge 1$, then X_n converges in probability as $n \to \infty$.
 - (b) Suppose $\mathsf{E}[X_n^2] < \infty$, for all *n*. If $X_n \xrightarrow{p} c$, where *c* is a deterministic constant, then $X_n \xrightarrow{m.s.} c$ as well.
 - (c) If $(X_t, t \in \mathbb{R})$ is Gaussian random process with covariance function $C_X(s, t) = st + \min\{s, t\}$, then (X_t) cannot be a Markov process.
 - (d) If X and Y are jointly Gaussian random variables with finite second moments, then

$$\mathsf{E}[(X - \mathsf{E}[X|Y])^2] = \mathsf{E}[(X - \hat{\mathsf{E}}[X|Y, Y^2])^2]$$

- (e) The function $R(\tau) = |\sin(\tau)|$ is a valid auto-correlation function for a WSS process.
- (f) The function $S(\omega) = e^{-|\omega|} |\sin(\omega)|$ is a valid power spectral density for a WSS process.
- (g) A time-homogenous discrete-state Markov process (X_t) satisfies $\underline{\pi}(t) = \underline{\pi}$ for some distribution $\underline{\pi}$. Then (X_t) must be a (strictly) stationary process.
- (h) For zero-mean jointly WSS (X_t) and (Y_t) , the noncausal Wiener filter for optimum linear estimation of X_t given $\{Y_s : s \in \mathbb{R}\}$ is necessarily *time-invariant*.

2. (12 pts) *CLT and Chernoff Bound.* Let $\{X_k : k \ge 0\}$ be a sequence of i.i.d. random variables with

$$\mathsf{P}{X_k = -1} = \frac{1}{4}$$
 $\mathsf{P}{X_k = 0} = \frac{1}{2}$ $\mathsf{P}{X_k = 1} = \frac{1}{4}$

Suppose $S_n = \sum_{k=1}^n X_k$.

- (a) Find $M_X(\theta)$, the moment generating function of X_k .
- (b) Use the Central Limit Theorem to find an approximation for $P\{S_{100} \ge 50\}$ in terms of the $Q(\cdot)$ function.
- (c) Now use the Chernoff Bound to find a bound on $P\{S_{100} \ge 50\}$.
- 3. (14 pts) Linear Innovations. Let $(Y_k : k \ge 1)$ be a discrete-time zero-mean WSS random process with ACF

$$R_Y(k) = (0.5)^{|k|}$$

- (a) Find the linear innovations sequence $\tilde{Y}_1, \tilde{Y}_2, \tilde{Y}_3$ corresponding to the first three samples of the process Y_1, Y_2, Y_3 .
- (b) Now suppose X is a zero mean random variable with finite second moment satisfying

$$\mathsf{E}[XY_1] = 1, \quad \mathsf{E}[XY_2] = 0.5, \quad \mathsf{E}[XY_3] = 0.25$$

Find the LMMSE estimate $\hat{\mathsf{E}}[X|Y_1, Y_2, Y_3]$.

- 4. (16 pts) Poisson process. Let $(N_t : t \ge 0)$ be a Poisson process with parameter $\lambda = 1$.
 - (a) Find $\mathsf{P}\{N_3 \le 2 \mid N_1 \ge 1\}$.
 - (b) Find $\mathsf{P}\{N_1 \ge 1 \mid N_3 \le 2\}$.
 - (c) Now suppose we define the random variable Z via the m.s. integral

$$Z = \int_0^1 N_t dt$$

Find the LMMSE estimate $\tilde{\mathsf{E}}[N_2|Z]$.

5. (20 pts) *FSMP*. Consider a time-homogeneous discrete-time Markov process $(X_k : k \ge 0)$ with state space $S = \{-1, 0, 1\}$ and one-step probability transition matrix P given by

$$P = \begin{bmatrix} 0.2 & 0.8 & 0\\ 0.4 & 0.2 & 0.4\\ 0 & 0.8 & 0.2 \end{bmatrix}$$

(a) Find the equilibrium distribution $\underline{\pi}$.

For the remaining parts, assume that X_0 has the equilibrium distribution.

- (b) Determine whether or not (X_k) is a martingale.
- (c) Find the joint distribution of X_1 and X_2 . (You may want to put the values in a table.)
- (d) Let the discrete-time process $(Y_k : k \ge 0)$ be defined by

$$Y_k = X_1 + kX_2, \quad k \ge 0$$

Find the mean and autocorrelation function of (Y_k) .

- (e) Find $\mathsf{E}[Y_2|Y_1, Y_0]$.
- (f) Determine whether or not (Y_k) is a Markov process.
- 6. (14 pts) Filtering. Consider a zero-mean WSS process (X_t) with autocorrelation function

$$R_X(\tau) = \frac{1}{2}e^{-|\tau|}$$

Suppose (X_t) is passed through a linear time-invariant system with transfer function

$$H(\omega) = \frac{1}{3+j\omega}$$

to produce the output process (Y_t) .

- (a) Find $S_{YX}(\omega)$ and use it to find $R_{YX}(\tau)$.
- (b) Find $S_Y(\omega)$ and use it to find $R_Y(\tau)$.
- (c) Find the LMMSE estimate $\mathsf{E}[X_2|Y_1]$.
- 7. (Extra credit attempt only if you have time; I will not grade your answer if you have not finished the rest of the exam)

The Cliff-Hanger. A drunken man is near a cliff. From where he stands, one step toward the cliff would send him over the edge. He takes a random step either towards or away from the cliff. At any step, his probability of taking a step away from the cliff is p, and of a step towards the cliff is (1-p). Find the probability that he will escape unharmed as a function of p, for the entire range $0 \le p \le 1$.