December 1, 2009

Solutions to Exam 2

1. Consider a Gaussian WSS process $(X_t : t \in \mathbb{R})$ with autocorrelation function:

$$R_X(\tau) = e^{-\tau^2/2}$$

(a) Show that (X_t) m.s. differentiable, and find the mean and autocorrelation function of the derivative process (X'_t) .

Ans: It is easy to see that $R'_X(\tau) = -\tau e^{-\tau^2/2}$ and $R''_X(\tau) = (\tau^2 - 1)e^{-\tau^2/2}$. Since R_X , R'_X and R''(X) exist and are continuous, (X_t) is m.s. continuously differentiable.

$$\mu_{X'}(t) = \frac{d}{dt}\mu_X = 0, \qquad R_{X'}(\tau) = -R_X''(\tau) = (1-\tau^2)e^{-\tau^2/2}$$

Note that since $R_X(\tau) \to 0$ as $\tau \to \infty$, $\mu_X = 0$ as well.

- (b) Determine whether or not (X'_t) is mean ergodic in the m.s. sense. **Ans:** $R_{X'}(\tau) = C_{X'}(\tau) = (1 - \tau^2)e^{-\tau^2/2}$. It is easy to see using L'Hopital's rule that $C_{X'}(\tau) \to 0$ as $\tau \to \infty$. Thus (X'_t) is mean ergodic in m.s. sense.
- (c) For any fixed t, find the joint distribution of the random variables X_t and X'_t . **Ans:** X_t and X'_t are jointly Gaussian, and we have established that they are zero mean. Furthermore,

$$\operatorname{Var}(X_t) = R_X(0) = 1$$
, $\operatorname{Var}(X'_t) = R'_X(0) = 1$, $\operatorname{Cov}(X_t, X'_t) = R_{X'X}(0) = R'_X(0) = 0$.

Thus, for fixed t, X_t and X'_t are independent $\mathcal{N}(0,1)$ random variables.

- (d) Find $\mathsf{E}[X_1|X_2' = 2]$. **Ans:** $R_{X'X}(\tau) = R'_X(\tau) = -\tau e^{-\tau^2/2}$. $\mathsf{E}[X_1|X_2' = 2] = 0 + \operatorname{Cov}(X_1, X_2') \operatorname{Var}(X_2')^{-1}(2 - 0) = R_{X'X}(1)R_{X'}(0)^{-1}(2) = -2e^{-1/2}$
- 2. (12 pts) Let $(N_t : t \ge 0)$ be a Poisson process with parameter $\lambda = 1$.
 - (a) Find $\mathsf{P}(\{N_2 \le 1\} | \{N_1 \le 1\})$. Ans:

$$\mathsf{P}(\{N_2 \le 1\} | \{N_1 \le 1\}) = \frac{\mathsf{P}(\{N_2 \le 1\}, \{N_1 \le 1\})}{\mathsf{P}\{N_1 \le 1\}}$$

Now $\mathsf{P}\{N_1 \leq 1\} = e^{-1} + e^{-1} = 2e^{-1}$, and using the independent increment property of (N_t) ,

$$\mathsf{P}(\{N_2 \le 1\}, \{N_1 \le 1\}) = \mathsf{P}(\{N_1 = 0\}, \{N_2 - N_1 \le 1\}) + \mathsf{P}(\{N_1 = 1\}, \{N_2 - N_1 = 0\})$$
$$= e^{-1}(e^{-1} + e^{-1}) + e^{-1}e^{-1} = 3e^{-2}$$

Thus $\mathsf{P}(\{N_2 \le 1\} | \{N_1 \le 1\}) = \frac{3}{2}e^{-1}$

(b) Find $\mathsf{P}(\{N_1 \le 1\} | \{N_2 \le 1\})$.

Ans: This doesn't need any computation. If $N_2 \leq 1$ then w.p. 1 it must be the case that $N_1 \leq 1$ as well, since (N_t) is non-decreasing w.p. 1. Thus this conditional probability equals 1.

- (c) Let $(Y_t : t \ge 0)$ be defined by $Y_t = N_t^2$. Determine whether or not (Y_t) is a Markov process. **Ans:** Since (N_t) is non-negative, the mapping from (N_t) to (Y_t) is one-one. Thus (Y_t) inherits the Markov property from (N_t) .
- (d) Determine whether or not (Y_t) has independent increments. Ans: No, (Y_t) is not an independent increment process. Consider,

$$\begin{split} \mathsf{E}[(Y_2 - Y_1)|(Y_1 - Y_0)] &= \mathsf{E}[(N_2^2 - N_1^2)|N_1] = \mathsf{E}[(N_2 - N_1)^2 + 2N_1N_2 - 2N_1^2|N_1] \\ &= \mathsf{E}[(N_2 - N_1)^2|N_1] + 2N_1\mathsf{E}[(N_2 - N_1)|N_1] \\ &= \mathsf{E}[(N_2 - N_1)^2] + 2N_1\mathsf{E}[(N_2 - N_1)] = 2 + 2N_1 \end{split}$$

The RHS is a function of N_1 , i.e., it is a function of Y_1 , and hence the increment $(Y_2 - Y_1)$ is not independent of the increment $(Y_1 - Y_0)$.

- 3. (12 pts) Let $(W_t : t \ge 0)$ be a Brownian motion with parameter $\sigma^2 = 1$.
 - (a) Find $P(\{W_1 + W_2 \ge 2\} | \{W_1 = 1\})$. Ans: Since W_1, W_2 are zero mean and jointly Gaussian,

$$\begin{aligned} \mathsf{P}(\{W_1 + W_2 \ge 2\} | \{W_1 = 1\}) &= \mathsf{P}(\{2W_1 + (W_2 - W_1) \ge 2\} | \{W_1 = 1\}) \\ &= \mathsf{P}\{(W_2 - W_1) \ge 0\} = Q(0) = \frac{1}{2} \end{aligned}$$

(b) Now suppose we define the random variable Z via the m.s. integral

$$Z = \int_0^1 W_t dt$$

Find $\mathsf{E}[W_2|Z]$.

Ans: Z is zero-mean Gaussian random variable with

$$\operatorname{Var}(Z) = \mathsf{E}[Z^2] = \int_0^1 \int_0^1 \min(s, t) \, dt ds = 2 \int_{t=0}^1 \int_{s=0}^t = \frac{1}{3}$$

Also,

$$\operatorname{Cov}(W_2, Z) = \mathsf{E}[W_2 Z] = \int_0^1 \mathsf{E}[W_2 W_t] dt = \int_0^1 t dt = \frac{1}{2}$$

Thus $\mathsf{E}[W_2|Z] = 0 + \operatorname{Cov}(W_2, Z)\operatorname{Var}(Z)^{-1}(Z - 0) = \frac{3}{2}Z$

(c) Let Let $(Y_t : t \ge 0)$ be defined $Y_t = W_t^3$. Determine whether or not (Y_t) is a martingale. Ans: If (Y_t) was a martingale, then we would have $\mathsf{E}[Y_2|Y_1] = Y_1$. But consider

$$\begin{split} \mathsf{E}[Y_2|Y_1] &= \mathsf{E}[W_2^3|W_1^3] = \mathsf{E}[W_2^3|W_1] = \mathsf{E}[(W_2 - W_1 + W_1)^3|W_1] \\ &= \mathsf{E}[(W_2 - W_1)^3 + 3(W_2 - W_1)W_1^2 + 3(W_2 - W_1)^2W_1 + W_1^3|W_1] \\ &= 0 + 0 + 3W_1\mathsf{E}[(W_2 - W_1)^2] + W_1^3 = 3W_1 + W_1^3 \neq Y_1 \end{split}$$

Thus (Y_t) is not a martingale.

- 4. (14 pts, equally weighted parts) True or False.
 - (a) Let $\Theta \sim \text{Unif}[0, 2\pi]$ and let the random process $(X_t : t \ge 0)$ be defined by $X_t = \cos(2\pi t + \Theta)$. Then (X_t) is an independent increment process. **Ans:** False. $X_1 - X_{0.5} = \cos(2\pi_{\Theta}) - \cos(\pi + \Theta) = 2\cos(\Theta)$ and $X_2 - X_{1.5} = \cos(4\pi_{\Theta}) - \cos(3\pi + \Theta) = 2\cos(\Theta)$ as well. These two increments are equal and hence certainly not independent.
 - (b) If (X_t) and (Y_t) are *independent* WSS Gaussian processes, then the process (Z_t) defined by Z_t = X_tY_t is also WSS.
 Ans: True. E[Z_t] = E[X_t]E[Y_t] = μ_Xμ_Y, which is not a function of t, and E[Z_tZ_{t+τ}] = E[X_tX_{t+τ}]E[Y_tY_{t+τ}] = R_X(τ)R_Y(τ), which is only a function of τ.
 - (c) If $(X_t, t \ge 0)$ is a martingale, then (X_t) is necessarily WSS as well. **Ans:** False. The Weiner process $(W_t, t \ge 0)$ is a martingale but it is not WSS.
 - (d) Consider a WSS process (X_t) with autocorrelation function $R_X(\tau)$ that converges to 2 as $\tau \to \infty$. Then (X_t) cannot be mean square ergodic in the m.s. sense.

Ans: False. Consider (X_t) which is WSS with mean $\mu_X = \sqrt{2}$ and auto-covariance function $C_X(\tau) = e^{-|\tau|}$. Then (X_t) is mean ergodic in m.s. sense and $R_X(\tau)$ that converges to 2 as $\tau \to \infty$.

(e) If $(X_t : t \in \mathbb{R})$ is a (continuous-time) stationary Gauss-Markov process, then the samples $(X_k, k \in \mathbb{Z})$ form a discrete-time stationary Gauss-Markov process. **Ans:** True. The continuous-time process (X_t) has auto-covariance function $C_X(\tau) = \sigma^2 e^{-\alpha |\tau|}$ for

some $\alpha > 0$. The sample process is obviously Gaussian and has auto-covariance function

$$C_X(k,k+m) = \mathsf{E}[X_k X_{k+m}] = \sigma^2 e^{-\alpha |m|} = \sigma^2 (e^{-\alpha})^{|m|}$$

Thus $C_X(k, k+m)$ has the necessary form for a discrete-time stationary Gauss-Markov process.

(f) If $(X_t : t \in \mathbb{R})$ is a zero-mean WSS Gaussian process, then the process (Y_t) defined by $Y_t = X_t^2$ is also a WSS process.

Ans: True. The mean $\mathsf{E}[Y_t] = \mathsf{E}[X_t^2] = R_X(0)$ is independent of t. Also, using the hint,

$$R_Y(t,t+\tau) = \mathsf{E}[Y_t Y_{t+\tau}] = \mathsf{E}[X_t X_t X_{t+\tau} X_{t+\tau}] = \mathsf{E}[X_t^2] \mathsf{E}[X_{t+\tau}^2] + 2(\mathsf{E}[X_t X_{t+\tau}])^2 = R_X(0)^2 + 2R_X(\tau)^2$$

which is independent of τ . Thus (Y_t) is WSS.

Alternatively, you could argue that since (X_t) is not just WSS but also stationary, (Y_t) must also be stationary. Thus (Y_t) must be WSS as well.

(g) Consider the function $R(\tau)$ defined by:

$$R(\tau) = \begin{cases} 1 + (1 - |\tau|) & \text{if } |\tau| \le 1\\ 0 & \text{otherwise} \end{cases}$$

 $R(\tau)$ is valid autocorrelation function for a WSS process.

Ans: False. It is easy to see that $R(\tau)$ is continuous at $\tau = 0$ but not at $\tau = +1$ or at $\tau = -1$.