ECE 534

November 17, 2008

Exam 2

- You have 75 minutes to complete this exam.
- Don't forget to put your name on the answer booklet.
- You are allowed 2 sheets of notes $(8.5" \times 11', \text{ both sides})$.
- Calculators laptop computers, PDA's, etc. are not permitted.
- Maximum possible score is 50.
- Neatness counts, especially for partial credit towards incorrect solutions.
- 1. (12 pts) Consider a Gaussian WSS process $(X_t : t \in \mathbb{R})$ with autocorrelation function:

$$R_X(\tau) = e^{-\tau^2/2}$$

- (a) Show that (X_t) m.s. differentiable, and find the mean and autocorrelation function of the derivative process (X'_t) .
- (b) Determine whether or not (X'_t) is mean ergodic in the m.s. sense.
- (c) For any fixed t, find the joint distribution of the random variables X_t and X'_t .
- (d) Find $\mathsf{E}[X_1|X_2'=2]$.
- 2. (12 pts) Let $(N_t : t \ge 0)$ be a Poisson process with parameter $\lambda = 1$.
 - (a) Find $\mathsf{P}(\{N_2 \le 1\} | \{N_1 \le 1\})$.
 - (b) Find $\mathsf{P}(\{N_1 \le 1\} | \{N_2 \le 1\})$.
 - (c) Let $(Y_t : t \ge 0)$ be defined by $Y_t = N_t^2$. Determine whether or not (Y_t) is a Markov process.
 - (d) Determine whether or not (Y_t) has independent increments.
- 3. (12 pts) Let $(W_t : t \ge 0)$ be a Brownian motion with parameter $\sigma^2 = 1$.
 - (a) Find $\mathsf{P}(\{W_1 + W_2 \ge 2\} | \{W_1 = 1\}).$
 - (b) Now suppose we define the random variable Z via the m.s. integral

$$Z = \int_0^1 W_t dt$$

Find $\mathsf{E}[W_2|Z]$.

(c) Let Let $(Y_t : t \ge 0)$ be defined $Y_t = W_t^3$. Determine whether or not (Y_t) is a martingale.

4. (14 pts, equally weighted parts) *True or False*. Determine if the following statements are True or False. You need to justify your answer clearly to get credit – provide a short proof if you say the statement is True, and a counter-example if you say the statement is False. Just stating "True" or "False" without any justification will get zero credit.

You may use without proof the following fact: if X_1 , X_2 , X_3 , X_4 are jointly Gaussian (correlated) random variables with zero mean, then

$$\mathsf{E}[X_1X_2X_3X_4] = \mathsf{E}[X_1X_2]\mathsf{E}[X_3X_4] + \mathsf{E}[X_1X_3]\mathsf{E}[X_2X_4] + \mathsf{E}[X_1X_4]\mathsf{E}[X_2X_3]$$

- (a) Let $\Theta \sim \text{Unif}[0, 2\pi]$ and let the random process $(X_t : t \ge 0)$ be defined by $X_t = \cos(2\pi t + \Theta)$. Then (X_t) is an independent increment process.
- (b) If (X_t) and (Y_t) are *independent* WSS Gaussian processes, then the process (Z_t) defined by $Z_t = X_t Y_t$ is also WSS.
- (c) If $(X_t, t \ge 0)$ is a martingale, then (X_t) is necessarily WSS as well.
- (d) Consider a WSS process (X_t) with autocorrelation function $R_X(\tau)$ that converges to 2 as $\tau \to \infty$. Then (X_t) cannot be mean square ergodic in the m.s. sense.
- (e) If $(X_t : t \in \mathbb{R})$ is a (continuous-time) stationary Gauss-Markov process, then the samples $(X_k, k \in \mathbb{Z})$ form a discrete-time stationary Gauss-Markov process.
- (f) If $(X_t : t \in \mathbb{R})$ is a zero-mean WSS Gaussian process, then the process (Y_t) defined by $Y_t = X_t^2$ is also a WSS process.
- (g) Consider the function $R(\tau)$ defined by:

$$R(\tau) = \begin{cases} 1 + (1 - |\tau|) & \text{if } |\tau| \le 1\\ 0 & \text{otherwise} \end{cases}$$

 $R(\tau)$ is valid autocorrelation function for a WSS process.