Solutions to Exam 1

Problem 1 (12 points) Let A_{1}, A_{2}, \ldots be a sequence of independent random variables, with $P\left[A_{i}=1\right]=P\left[A_{i}=\frac{1}{2}\right]=\frac{1}{2}$ for all i. Let $B_{k}=A_{1} \cdots A_{k}$.
(a) Does $\lim _{k \rightarrow \infty} B_{k}$ exist in the m.s. sense? Justify your anwswer.
(b) Does $\lim _{k \rightarrow \infty} B_{k}$ exist in the a.s. sense? Justify your anwswer.
(c) Let $S_{n}=B_{1}+\ldots+B_{n}$. You can use without proof (time is short!) the fact that $\lim _{m, n \rightarrow \infty} E\left[S_{m} S_{n}\right]=$ $\frac{35}{3}$, which implies that $\lim _{n \rightarrow \infty} S_{n}$ exists in the m.s. sense. Find the mean and variance of the limit random variable.
(d) Does $\lim _{n \rightarrow \infty}$ a.s. S_{n} exist? Justify your anwswer.
(a) $E\left[\left(B_{k}-0\right)^{2}\right]=E\left[A_{1}^{2}\right]^{k}=\left(\frac{5}{8}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$. Thus, $\lim _{k \rightarrow \infty}$ m.s. $B_{k}=0$.
(b) Each sample path of the sequence B_{k} is monotone nonincreasing and bounded below by zero, and is hence convergent. Thus, $\lim _{k \rightarrow \infty}$ a.s. B_{k} exists. (The limit has to be the same as the m.s. limit, so B_{k} converges to zero almost surely.) (c) Mean square convergence implies convergence of the mean. Thus, the mean of the limit is $\lim _{n \rightarrow \infty} E\left[S_{n}\right]=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} E\left[B_{k}\right]=$ $\sum_{k=1}^{\infty}\left(\frac{3}{4}\right)^{k}=3$. By the property given in the problem statement, the second moment of the limit is $\frac{35}{3}$, so the variance of the limit is $\frac{35}{3}-3^{2}=\frac{8}{3}$.
(d) Each sample path of the sequence S_{n} is monotone nondecreasing and is hence convergent. Thus, $\lim _{k \rightarrow \infty}$ a.s. B_{k} exists. (The limit has to be the same as the m.s. limit.)

Here is a proof of the claim given in part (c) of the problem statement, although the proof was not asked for on the exam. If $j \leq k$, then $E\left[B_{j} B_{k}\right]=E\left[A_{1}^{2} \cdots A_{j}^{2} A_{j+1} \cdots A_{k}\right]=\left(\frac{5}{8}\right)^{j}\left(\frac{3}{4}\right)^{k-j}$, and a similar expression holds for $j \geq k$. Therefore,

$$
\begin{aligned}
E\left[S_{n} S_{m}\right] & =E\left[\sum_{j=1}^{n} B_{j} \sum_{k=1}^{n} B_{k}\right]=\sum_{j=1}^{n} \sum_{k=1}^{n} E\left[B_{j} B_{k}\right] \\
& \rightarrow \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} E\left[B_{j} B_{k}\right] \\
& =2 \sum_{j=1}^{\infty} \sum_{k=j+1}^{\infty}\left(\frac{5}{8}\right)^{j}\left(\frac{3}{4}\right)^{k-j}+\sum_{j=1}^{\infty}\left(\frac{5}{8}\right)^{j} \\
& =2 \sum_{j=1}^{\infty} \sum_{l=1}^{\infty}\left(\frac{5}{8}\right)^{j}\left(\frac{3}{4}\right)^{l}+\sum_{j=1}^{\infty}\left(\frac{5}{8}\right)^{j} \\
& =\left(\sum_{j=1}^{\infty}\left(\frac{5}{8}\right)^{j}\right)\left(2 \sum_{l=1}^{\infty}\left(\frac{3}{4}\right)^{l}+1\right) \\
& =\frac{5}{3}(2 \cdot 3+1)=\frac{35}{3}
\end{aligned}
$$

Problem 2 (12 points) Let X, Y, and Z be random variables with finite second moments and suppose X is to be estimated. For each of the following, if true, give a brief explanation. If false, give a counter example.
(a) TRUE or FALSE: $E\left[|X-E[X \mid Y]|^{2}\right] \leq E\left[\left|X-\widehat{E}\left[X \mid Y, Y^{2}\right]\right|^{2}\right]$.
(b) TRUE or FALSE: $E\left[|X-E[X \mid Y]|^{2}\right]=E\left[\left|X-\widehat{E}\left[X \mid Y, Y^{2}\right]\right|^{2}\right]$ if X and Y are jointly Gaussian.
(c) TRUE or FALSE? $E\left[|X-E[E[X \mid Z] \mid Y]|^{2}\right] \leq E\left[|X-E[X \mid Y]|^{2}\right]$.
(d) TRUE or FALSE? If $E\left[|X-E[X \mid Y]|^{2}\right]=\operatorname{Var}(X)$ then X and Y are independent.
(a) TRUE. The estimator $E[X \mid Y]$ yields a smaller MSE than any other function of Y, including $\widehat{E}\left[X \mid Y, Y^{2}\right]$.
(b) TRUE. Equality holds because the unconstrained estimator with the smallest mean squre error, $E[X \mid Y]$, is linear, and the MSE for $\widehat{E}\left[X \mid Y, Y^{2}\right]$ is less than or equal to the MSE of any linear estimator.
(c) FALSE. For example if X is a nonconstant random variable, $Y=X$, and $Z \equiv 0$, then, on one hand, $E[X \mid Z]=$ $E[X]$, so $E[E[X \mid Z] \mid Y]=E[X]$, and thus $E\left[|X-E[E[X \mid Z] \mid Y]|^{2}\right]=\operatorname{Var}(X)$. On the other hand, $E[X \mid Y]=X$ so that $E\left[|X-E[X \mid Y]|^{2}\right]=0$.
(d) FALSE. For example, suppose $X=Y W$, where W is a random variable independent of Y with mean zero and variance one. Then given Y, the conditional distribution of X has mean zero and variance Y^{2}. In particular, $E[X \mid Y]=0$, so that $E\left[|X-E[X \mid Y]|^{2}\right]=\operatorname{Var}(X)$, but X and Y are not independent.

Problem 3 (6 points) Recall from a homework problem that if $0<f<1$ and if S_{n} is the sum of n independent random variables, such that a fraction f of the random variables have a CDF F_{Y} and a fraction $1-f$ have a $\operatorname{CDF} F_{Z}$, then the large deviations exponent for $\frac{S_{n}}{n}$ is given by:

$$
l(a)=\max _{\theta}\left\{\theta a-f M_{Y}(\theta)-(1-f) M_{Z}(\theta)\right\}
$$

where $M_{Y}(\theta)$ and $M_{Z}(\theta)$ are the \log moment generating functions for F_{Y} and F_{Z} respectively.

Consider the following variation. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, and identically distributed, each with CDF given by $F_{X}(c)=f F_{Y}(c)+(1-f) F_{Z}(c)$. Equivalently, each X_{i} can be generated by flipping a biased coin with probability of heads equal to f, and generating X_{i} using CDF F_{Y} if heads shows and generating X_{i} with CDF F_{Z} if tails shows. Let $\widetilde{S}_{n}=X_{1}+\cdots+X_{n}$, and let \widetilde{l} denote the large deviations exponent for $\frac{\widetilde{S}_{n}}{n}$.
(a) Express the function \widetilde{l} in terms of f, M_{Y}, and M_{Z}.
(b) Determine which is true and give a proof: $\widetilde{l}(a) \leq l(a)$ for all a, or $\widetilde{l}(a) \geq l(a)$ for all a.
(a) $\widetilde{l}(a)=\max _{\theta}\left\{\theta a-M_{X}(\theta)\right\}$ where

$$
\begin{aligned}
M_{X}(\theta) & =\log E[\exp (\theta X)] \\
& =\log \{f E[\exp (\theta Y)]+(1-f) E[\exp (\theta Z)]\} \\
& =\log \left\{f \exp \left(M_{Y}(\theta)\right)+(1-f) \exp \left(M_{Z}(\theta)\right)\right\}
\end{aligned}
$$

(b) View $f \exp \left(M_{Y}(\theta)\right)+(1-f) \exp \left(M_{Z}(\theta)\right)$ as an average of $\exp \left(M_{Y}(\theta)\right)$ and $\exp \left(M_{Z}(\theta)\right)$. The definition of concavity (or Jensen's inequality) applied to the concave function $\log u$ implies that \log (average) \geq average (\log), so that $\log \left\{f \exp \left(M_{Y}(\theta)\right)+(1-f) \exp \left(M_{Z}(\theta)\right) \geq f M_{Y}(\theta)+(1-f) M_{Z}(\theta)\right.$, where we also used the fact that $\log \exp M_{Y}(\theta)=M_{Y}(\theta)$. Therefore, $\widetilde{l}(a) \leq l(a)$ for all a.

Remark: This means that $\frac{\widetilde{S}_{n}}{n}$ is more likely to have large deviations than $\frac{S_{n}}{n}$. That is reasonable, because $\frac{\widetilde{S}_{n}}{n}$ has randomness due not only to F_{Y} and F_{Z}, but also due to the random coin flips. This point is particularly clear in case the Y 's and Z 's are constant, or nearly constant, random variables.

