
Solutions to Exam 1

Problem 1 (12 points) Let A1, A2, . . . be a sequence of independent random variables, with
P [Ai = 1] = P [Ai = 1

2 ] = 1
2 for all i. Let Bk = A1 · · ·Ak.

(a) Does limk→∞Bk exist in the m.s. sense? Justify your anwswer.
(b) Does limk→∞Bk exist in the a.s. sense? Justify your anwswer.
(c) Let Sn = B1+. . .+Bn. You can use without proof (time is short!) the fact that limm,n→∞E[SmSn] =
35
3 , which implies that limn→∞ Sn exists in the m.s. sense. Find the mean and variance of the limit
random variable.
(d) Does limn→∞ a.s. Sn exist? Justify your anwswer.

(a) E[(Bk − 0)2] = E[A2
1]

k = ( 5
8
)k → 0 as k →∞. Thus, limk→∞ m.s. Bk = 0.

(b) Each sample path of the sequence Bk is monotone nonincreasing and bounded below by zero, and is hence conver-
gent. Thus, limk→∞ a.s. Bk exists. (The limit has to be the same as the m.s. limit, so Bk converges to zero almost surely.)
(c) Mean square convergence implies convergence of the mean. Thus, the mean of the limit is limn→∞ E[Sn] = limn→∞

Pn
k=1 E[Bk] =P∞

k=1(
3
4
)k = 3. By the property given in the problem statement, the second moment of the limit is 35

3
, so the variance of

the limit is 35
3
− 32 = 8

3
.

(d) Each sample path of the sequence Sn is monotone nondecreasing and is hence convergent. Thus, limk→∞ a.s. Bk

exists. (The limit has to be the same as the m.s. limit.)

Here is a proof of the claim given in part (c) of the problem statement, although the proof was not asked for on the exam.
If j ≤ k, then E[BjBk] = E[A2

1 · · ·A2
jAj+1 · · ·Ak] = ( 5

8
)j( 3

4
)k−j , and a similar expression holds for j ≥ k. Therefore,
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Problem 2 (12 points) Let X, Y, and Z be random variables with finite second moments and suppose
X is to be estimated. For each of the following, if true, give a brief explanation. If false, give a counter
example.
(a) TRUE or FALSE: E[|X − E[X|Y ]|2] ≤ E[|X − Ê[X|Y, Y 2]|2].
(b) TRUE or FALSE: E[|X − E[X|Y ]|2] = E[|X − Ê[X|Y, Y 2]|2] if X and Y are jointly Gaussian.
(c) TRUE or FALSE? E[ |X − E[E[X|Z] |Y ]|2] ≤ E[|X − E[X|Y ]|2].
(d) TRUE or FALSE? If E[|X − E[X|Y ]|2] = Var(X) then X and Y are independent.

(a) TRUE. The estimator E[X|Y ] yields a smaller MSE than any other function of Y , including bE[X|Y, Y 2].

(b) TRUE. Equality holds because the unconstrained estimator with the smallest mean squre error, E[X|Y ], is linear,

and the MSE for bE[X|Y, Y 2] is less than or equal to the MSE of any linear estimator.

(c) FALSE. For example if X is a nonconstant random variable, Y = X, and Z ≡ 0, then, on one hand, E[X|Z] =

E[X], so E[E[X|Z]|Y ] = E[X], and thus E[|X − E[E[X|Z]|Y ]|2] = Var(X). On the other hand, E[X|Y ] = X so that

E[|X − E[X|Y ]|2] = 0.

(d) FALSE. For example, suppose X = Y W , where W is a random variable independent of Y with mean zero and variance

one. Then given Y , the conditional distribution of X has mean zero and variance Y 2. In particular, E[X|Y ] = 0, so that

E[|X − E[X|Y ]|2] = Var(X), but X and Y are not independent.
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Problem 3 (6 points) Recall from a homework problem that if 0 < f < 1 and if Sn is the sum of n
independent random variables, such that a fraction f of the random variables have a CDF FY and a
fraction 1 − f have a CDF FZ , then the large deviations exponent for Sn

n is given by:

l(a) = max
θ

{θa− fMY (θ)− (1− f)MZ(θ)}

where MY (θ) and MZ(θ) are the log moment generating functions for FY and FZ respectively.

Consider the following variation. Let X1, X2, . . . , Xn be independent, and identically distributed, each
with CDF given by FX(c) = fFY (c)+(1−f)FZ(c). Equivalently, each Xi can be generated by flipping
a biased coin with probability of heads equal to f , and generating Xi using CDF FY if heads shows
and generating Xi with CDF FZ if tails shows. Let S̃n = X1 + · · · + Xn, and let l̃ denote the large
deviations exponent for eSn

n .
(a) Express the function l̃ in terms of f , MY , and MZ .
(b) Determine which is true and give a proof: l̃(a) ≤ l(a) for all a, or l̃(a) ≥ l(a) for all a.

(a) el(a) = maxθ {θa−MX(θ)} where

MX(θ) = log E[exp(θX)]

= log{fE[exp(θY )] + (1− f)E[exp(θZ)]}
= log{f exp(MY (θ)) + (1− f) exp(MZ(θ))}

(b) View f exp(MY (θ)) + (1 − f) exp(MZ(θ)) as an average of exp(MY (θ)) and exp(MZ(θ)). The definition of con-
cavity (or Jensen’s inequality) applied to the concave function log u implies that log(average) ≥ average(log), so that
log{f exp(MY (θ))+(1−f) exp(MZ(θ)) ≥ fMY (θ)+(1−f)MZ(θ), where we also used the fact that log exp MY (θ) = MY (θ).

Therefore, el(a) ≤ l(a) for all a.

Remark: This means that
eSn
n

is more likely to have large deviations than Sn
n

. That is reasonable, because
eSn
n

has

randomness due not only to FY and FZ , but also due to the random coin flips. This point is particularly clear in case the

Y ’s and Z’s are constant, or nearly constant, random variables.
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