University of Illinois at Urbana-Champaign
 Department of Electrical and Computer Engineering
 ECE 434: Random Processes

Spring 2004
Final Exam
Friday, May 7, 1:30-4:30pm, 106B1 Engineering Hall

READ THESE COMMENTS BEFORE STARTING THE EXAM!

- This is a closed-book exam! You are allowed three sheets of handwritten notes (both sides). Calculators should not be necessary, but feel free to use one.
- Write your name on the answer booklet.
- There are eight unequally weighted problems for a total of $\mathbf{6 0}$ points. A bonus problem worth 5 points is also included. Problems are not necessarily in order of difficulty.
- A correct answer does not guarantee credit; an incorrect answer does not guarantee loss of credit. Provide clear explanations, show all relevant work and justify your answers! If we cannot make sense of your writing or reasoning, you may loose points.
- Read each problem carefully and think before performing detailed calculations.
- Only the supplied answer booklet is to be handed in. No additional pages will be considered in the grading. You may want to work things through in the blank areas of the exam and then neatly transfer to the answer sheet the work you would like us to look at.

Formulas:

- $\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$,
- $\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$,
- $\sin a \cos b=\frac{1}{2}[\sin (a-b)+\sin (a+b)]$,
- $\mathcal{F} \mathcal{T}\left\{e^{-\alpha t} u(t)\right\}=\frac{1}{\alpha+j 2 \pi f}, \quad \alpha>0$
- $\mathcal{F T}\left\{e^{-\alpha t^{2}}\right\}=\sqrt{\frac{\pi}{\alpha}} e^{-\frac{\omega^{2}}{4 \alpha}}$

$$
\sin (a \pm b)=\sin a \cos b \pm \sin b \cos a
$$

$$
\cos a \cos b=\frac{1}{2}[\cos (a-b)+\cos (a+b)]
$$

$$
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta
$$

Problem 1 (12/60, equally weighted parts)
This problem has twelve independent true/false questions.
(a) If the matrix $\left[\begin{array}{ll}2 & r \\ r & 3\end{array}\right]$ is the covariance matrix of a zero-mean random vector $X=$ $\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$, then r necessarily satisfies $|r| \leq 2$.
(b) If X_{t} and Y_{t} are independent wide-sense stationary (WSS) random processes, then $Z_{t}=$ $X_{t} \cdot Y_{t}$ is a WSS random process.
(c) The function $S_{X}(\omega)=\frac{1-\omega^{2}}{1+\omega^{2}}$ is a valid power spectral density (PSD) for a wide-sense stationary random process X_{t}.
(d) If $A \subset B$ and $P[B] \neq 0$, then $P[A \mid B] \geq P[A]$.
(e) If X and Y are i.i.d. Gaussian random variables with mean 0 and variance 1, then $Z_{1}=X-Y$ and $Z_{2}=X+Y$ are independent, identically distributed (i.i.d.) Gaussian random variables.
(f) Let the random process Y_{t} be defined as $Y_{t}=X_{1} \sin (2 \pi t)+X_{2} \cos (2 \pi t)$, where X_{1} and X_{2} are zero-mean random variables that satisfy $E\left[X_{1} X_{2}\right]=0$ and $E\left[X_{1}^{2}\right]=E\left[X_{2}^{2}\right]=\sigma^{2}$. Then, Y_{t} is a wide-sense stationary random process.
(g) If X is a nonnegative random variable, then $\arctan (E[X]) \leq E[\arctan (X)]$.
(h) For any two random variables X and Y, it is true that $E[E[X \mid Y, Z] \mid Y]=E[X \mid Y]$.
(i) The function $R_{X}(t, s)=e^{t-s}$ cannot be the autocorrelation function of a random process X_{t}.
(j) If $R_{X}(\tau)$ is the autocorrelation function of a mean square (m.s.) differentiable wide-sense (WSS) random process, then it is possible that

$$
R^{\prime}(\tau)=1+\sin ^{2}\left(\tau^{2}\right)
$$

(k) It is possible for two jointly wide-sense stationary (jointly WSS) random processes X_{t} and Y_{t} to satisfy

$$
\begin{aligned}
R_{X}(\tau) & =2 e^{-3|\tau|} \\
R_{Y}(\tau) & =5 e^{-|\tau|} \\
R_{X Y}(\tau) & =15 e^{-3|\tau|}-2 e^{-|\tau|}
\end{aligned}
$$

(1) The autocorrelation function $R_{X}(\tau)$ of a wide-sense stationary (WSS) random process N_{t} with power spectral density (PSD) $S_{N}(\omega)=\frac{4}{2+\omega^{4}}$ satisfies

$$
\int_{-\infty}^{+\infty} R_{X}(\tau) d \tau \leq \pi
$$

Problem 2 (6/60, equally weighted parts)
Suppose that the random variable Y is Gaussian with mean 0 and variance 1. We know that random variable X satisfies $X=|Y|$ and we are interested in estimating X based on the observation that $Y=y$. (Hint: To answer the following questions, you may want to use the following numerical values: $E[|Y|]=0.8, E\left[|Y|^{3}\right]=1.6, E\left[|Y|^{4}\right]=3$.)
(a) Find the minimum mean square error (MMSE) estimator $\widehat{X}_{M M S E}(y)$? What is the associated mean square error MSE_{1} ?
(b) Find the linear minimum mean square error (LMMSE) estimator $\widehat{X}_{L M M S E}(y)=\alpha+\beta y$? What is the associated mean square error MSE_{2} ?
(c) Find the minimum mean square error estimator of the form

$$
\widehat{X}(y)=a+b y+c y^{2}
$$

Problem 3 (8/60, equally weighted parts)
This problem has two independent parts.
Part A: Let $X_{t}, 0 \leq t<+\infty$, be a Poisson random process with $X_{0}=0$ and rate $\lambda=9$. Let

$$
Y_{n}=\frac{1}{\sqrt{n}} X_{n}-9 \sqrt{n}
$$

for $n=1,2,3, \ldots$. To what random variable, if any, does the sequence Y_{n} converge in distribution (i.d.)?

Part B: Let X_{n} for $n=1,2,3, \ldots$ be a sequence of independent, identically distributed (i.i.d.) Poisson random variables with parameter $\lambda=4$. Let

$$
W_{n}=\alpha^{n} X_{1} X_{2} X_{3} \ldots X_{n}
$$

for $n=1,2,3, \ldots$ For what values of α, if any, is W_{n} a Martingale?

Problem 4 (6/60, equally weighted parts)
This problem has two independent parts.
Part A: A wide-sense stationary random process X_{t} has mean 0 and autocorrelation function

$$
R_{X}(\tau)=2 e^{-|\tau|}-e^{-2|\tau|}
$$

Does the mean square derivative $\frac{d^{k}}{d t^{k}} X_{t}$ exists as a well-defined second order process for all k ? If not, what is the highest value of k for which it exists?

Part B: A Gaussian random process X_{t} satisfies

$$
\begin{aligned}
\mu_{X}(t) & =\cos (t) \\
R_{X}(t, s) & =\cos (t) \cos (s)+4 e^{-|t-s|}
\end{aligned}
$$

Find the conditional density of $X_{\frac{\pi}{2}}$ given $X_{0}=1$, i.e., find

$$
f_{\left.X_{\frac{\pi}{2}} \right\rvert\, X_{0}=1}\left(x \mid X_{0}=1\right)
$$

Problem 5 (8/60, equally weighted parts)
Consider the following estimation problem: a Gaussian random variable X with mean 0 and variance 1 is used to modulate the amplitude of a deterministic signal $s(t), 0 \leq t \leq T$, that satisfies

$$
\int_{0}^{T}|s(t)|^{2} d t=1
$$

The modulated waveform is corrupted by an additive white Gaussian noise process N_{t} with mean 0 and autocorrelation function $R_{N}(\tau)=\sigma^{2} \delta(\tau)$. Assume that N_{t} and X are independent. The resulting random process Y_{t} satisfies

$$
Y_{t}=X s(t)+N_{t}
$$

and the receiver needs to find the minimum mean square (MMSE) estimate for X based on Y_{t}, $0 \leq t \leq T$.
(a) By considering an appropriate KL expansion of Y_{t} with basis functions $\phi_{1}(t)=s(t)$ and $\phi_{i}(t)$ orthogonal to $\phi_{1}(t)$ for $i>1$, show that all but one coefficients are orthogonal to X. Express this coefficient in terms of $X, s(t)$ and N_{t}.
(b) Using part (a) or otherwise, derive \widehat{X}, the MMSE estimate of X given Y_{t} for $0 \leq t \leq T$.

Problem 6 (4/60, equally weighted parts)
Let X_{t} be a zero-mean wide-sense stationary (WSS) random process with autocorrelation function $R_{X}(\tau)=e^{-|\tau|}$. Suppose that X_{t} is processed via a linear time-invariant (LTI) system as shown below.

(a) For this part, assume that $h(t)=e^{-b t} u(t)$ for some positive constant b. What is $S_{Y}(\omega)$, the power spectral density (PSD) of the output random process Y_{t} ?
(b) For this part, assume that you have no direct information about the impulse response of the LTI system, but that you know the cross-correlation between the output and input

$$
R_{Y X}(\tau)=e^{-\tau} u(\tau)-2 e^{-2 \tau} u(\tau)+e^{-3 \tau} u(\tau) .
$$

Find a possible impulse response $h(t)$. Is your answer unique? If so, explain why. If not, specify another possible $h(t)$.

Problem 7 (8/60, unequally weighted parts)
Consider the system shown below, where (i) X_{t} is a wide-sense stationary (WSS) random process with mean 0 and autocorrelation function $R_{X}(\tau)=e^{-\lambda|\tau|}$ with $\lambda>0$; (ii) the WSS random process N_{t} is a white noise process that is independent of X_{t}, and has mean 0 and autocorrelation function $R_{N}(\tau)=\sigma^{2} \delta(\tau)$; (iii) the system that takes X_{t} as an input is linear time-invariant (LTI) with impulse response $g(t)=e^{-\alpha t^{2}}$ with $\alpha>0$.

(a) (2 points) Find $S_{X}(\omega)$, the power spectral density (PSD) of the input random process X_{t}.
(b) (2 points) Find $S_{Y}(\omega)$, the power spectral density (PSD) of the output random process Y_{t}.
(c) (4 points) Find the frequency response $H(\omega)$ of the noncausal Wiener filter that produces an MMSE estimate of X_{t} based on the observation of $Y_{t},-\infty<t<+\infty$.

Problem 8 (8/60, equally weighted parts)
Let X_{t} and N_{t} be independent zero-mean wide-sense stationary (WSS) random processes with autocorrelation functions $R_{X}(\tau)=e^{-3|\tau|}$ and $R_{N}(\tau)=\delta(\tau)$. Suppose that X_{t} is processed in the fashion shown below where both systems are linear time-invariant (LTI) with $h_{1}(t)=2 \delta(t)$ and $h_{2}(t)=2 e^{-5 t} u(t)$.

(a) Find $S_{Y}(\omega)$, the power spectral density (PSD) at the output Y_{t}.
(b) Find the frequency response of the noncausal Wiener filter $H(\omega)$ that takes $Y_{t},-\infty<$ $t<+\infty$, as input and produces the minimum mean square error (MMSE) estimate for X_{t} given Y_{t}.

Bonus Problem (5/60)

Suppose that you randomly place two marks on a stick of length one. More specifically, one mark is placed at distance X from the left end of the stick and the other mark is placed at distance Y from the left end of the stick, with X and Y being i.i.d. random variables uniformly distributed in $[0,1]$. What is the probability that if you cut the stick at both marks, you can form a triangle? [Hint: For a triangle with sides of lengths a, b and c we need $a+b>c$ and $a+c>b$ and $b+c>a$.]

