
Solutions to ECE 434 Final Exam, Spring 2003

Problem 1 (21 points) Indicate true or false for each statement below and justify your answers.
(One third credit is assigned for correct true/false answer without correct justification.)
(a) If H(z) is a positive type z-transform, then so is cosh(H(z)). (Recall that cosh(x) = ex+e−x

2 .)
(b) If X is a m.s. differentiable stationary Gaussian random process, then for t fixed, Xt is
independent of the derivative at time t: X ′

t.
(c) If X = (Xt : t ∈ IR) is a WSS, m.s. differentiable, mean zero random process, then X is mean
ergodic in the mean square sense.
(d) If M = (Mt : t ≥ 0) is a martingale with E[M2

t ] < ∞ for each t, then E[M2
t ] is increasing in t

(i.e. E[M2
s ] ≤ E[M2

t ] whenever s ≤ t.)
(e) If X1, X2, . . . , is a sequence of independent, exponentially distributed random variables with
mean one, then there is a finite constant K such that P [X1 + · · ·+ Xn ≥ 2n] ≤ K exp(−n2) for all
n.
(f) If X and Y are random variables such that E[X2] < ∞ and E[X|Y ] = Y , then
E[X2|Y 2] = E[X|Y ]2.
(g) If N = (Nt : t ≥ 0) is a random process with E[Nt] = λt and E[NsNt] = λ min{s, t} for s, t ≥ 0,
then N is a Poisson process.
(a) TRUE, The power series expansion of cosh(z) about zero is absolutely convergent yielding

cosh(H(z)) = 1 + (H(z))2

2!
+ (H(z))4

4!
+ · · · , and sums and products of positive type functions are positive type.

(b) TRUE, since CX′X(0) = C′
X(0) = 0, and uncorrelated Gaussians are independent.

(c) FALSE, for a counter example let Xt = U for all t, where U is a mean zero random variable with 0 < Var(U) < ∞.

(d) TRUE, since for s < t, (Mt −Ms) ⊥ Ms, so E[M2
t ] = E[M2

s ] + E[(Mt −Ms)
2] ≥ E[M2

s ].

(e) FALSE, since Cramèrs theorem implies that for any ε > 0, P [X1 + · · · + Xn ≥ 2n] ≥ exp(−(l(2) + ε)n) for all

sufficiently large n.

(f) FALSE. For example let X have mean zero and positive variance, and let Y ≡ 0.

(g) FALSE. For example it could be that Nt = Wt + λt, where W is a Wiener process with parameter σ2 = λ.

Problem 2 (12 points) Let N be a Poisson random process with rate λ > 0 and let Yt =
∫ t
0 Nsds.

(a) Sketch a typical sample path of Y and find E[Yt].
(b) Is Y m.s. differentiable? Justify your answer.
(c) Is Y Markov ? Justify your answer.
(d) Is Y a martingale? Justify your answer.
(a) Your sketch should show that Y is continuous and piecewise linear. The slope of Y is 0 on the first interval, 1 on

the second interval, 2 on the third interval, etc. E[Yt] =
∫ t

0
E[Ns]ds =

∫ t

0
λsds = λt2

2
.

(b) YES, since the integral of a m.s. continuous process is m.s. differentiable. Y ′ = N .

(c) N0, because knowing both Yt and Yt−ε for a small ε > 0 determines the slope Nt with high probability, allowing

a better prediction of Yt+ε than knowing Yt alone.

(d) NO, for example because a requirement for Y to be a martingale is E[Yt] = E[Y0] for all t.

Problem 3 (12 points) Let Xt = U
√

2 cos(2πt) + V
√

2 sin(2πt) for 0 ≤ t ≤ 1, where U and V are
independent, N(0, 1) random variables, and let N = (Nτ : 0 ≤ τ ≤ 1) denote a real-valued Gaussian
white noise process with RN (τ) = σ2δ(τ) for some σ2 ≥ 0. Suppose X and N are independent.
Let Y = (Yt = Xt + Nt : 0 ≤ t ≤ 1). Think of X as a signal, N as noise, and Y as an observation.
(a) Describe the Karhunen-Loève expansion of X. In particular, identify the nonzero eigenvalue(s)
and the corresponding eigenfunctions.
There is a complete orthonormal basis of functions (φn : n ≥ 1) which includes the eigenfunctions
found in part (a) (the particular choice is not important here), and the Karhunen-Loève expan-
sions of N and Y can be given using such basis. Let Ñi = (N,φi) =

∫ 1
0 Ntφi(t)dt denote the ith
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coordinate of N . The coordinates (Ñ1, Ñ2, . . .) are N(0, σ2) random variables and U, V, Ñ1, Ñ2, . . .
are independent. Consider the Karhunen-Loève expansion of Y , using the same orthonormal basis.
(b) Express the coordinates of Y in terms of U, V, Ñ1, Ñ2, . . . and identify the corresponding eigen-
values (i.e. the eigenvalues of (RY (s, t) : 0 ≤ s, t ≤ 1)).
(c) Describe the minimum mean square error estimator Û of U given Y = (Yt : 0 ≤ t ≤ 1), and
find the minimum mean square error. Use the fact that observing Y is equivalent to observing the
random coordinates appearing in the KL expansion of Y .
(a)Let φ1(t) =

√
2 cos(2πt) and φ2(t) =

√
2 sin(2πt). Then φ1 and φ2 are orthonormal and the K-L expansion of X is

simply X = Uφ1(t)+V φ2(t). The nonzero eigenvalues are λ1 = λ2 = 1. We could write X ↔ (U, V, 0, 0, . . .). Remark:

Since λ1 = λ2, any linear combination of these two eigenfunctions is also an eigenfunction. Any two orthonormal

functions with the same linear span as φ1 and φ2 could be used in place of the two functions given. For example,

another correct choice of eigenfunctions is ξn(ω) = exp(2πjnt) for integers n. We also know this choice works be-

cause X is a WSS periodic random process. For this choice, ξ1 and ξ−1 are the eigenfunctions with corresponding

eigenvalues λ−1 = λ1 = 1, and {ξ1, ξ−1} and {φ1, φ2} have the same linear span.

(b) Y ↔ (U + Ñ1, V + Ñ2, Ñ3, Ñ4, . . .) and the eigenvalues are 2, 2, 1, 1, . . .. (c) Observing Y = (Yt : 0 ≤ t ≤ 1) is

equivalent to observing the coordinates of Y . Only the first coordinate of Y is relevant – the other coordinates of Y are

independent of U and the first coordinate of Y . Thus, we need to estimate U given Ỹ1, where Ỹ1 = (Y, φ1) = U + Ñ1.

The estimate is given by Cov(U,Ỹ1)

Var(Ỹ1)
Ỹ1 = 1

1+σ2 Ỹ1 and the covariance of error is Var(U)Var(Ñ1)

Var(U)+Var(Ñ1)
= σ2

1+σ2 .

Problem 4 (7 points) Let (Xk : k ∈ ZZ) be a stationary discrete-time Markov process with state

space {0, 1} and one-step transition probability matrix P =
(

3/4 1/4
1/4 3/4

)
. Let Y = (Yt : t ∈ IR)

be defined by Yt = X0 + (t×X1).
(a) Find the mean and covariance functions of Y .
(b) Find P [Y5 ≥ 3].
(a) The distribution of Xk for any k is the probability vector π solving π = Pπ, or π = ( 1

2
, 1

2
). Thus P [(X0, X1) =

(0, 0)] = P [(X0, X1) = (1, 1)] = 1
2

3
4

= 3
8
, and P [(X0, X1) = (0, 1)] = P [(X0, X1) = (1, 0)] = 1

2
1
4

= 1
8
. Thus,

E[Xi] = E[X2
i ] = 1

2
and E[X0X1] = 3

8
so Var(Xi) = 1

4
and Cov(X0, X1) = 3

8
− ( 1

2
)2 = 1

8
. Thus, E[Yt] = 1+t

2
and

Cov(Ys, Yt) = Cov(X0 + sX1, X0 + tX1) = Var(X0) + (s + t)Cov(X0, X1) + stVar(X1) = 1
4

+ s+t
8

+ st
4

.

(b) Since Y5 = X0 + 5X1, the event {Y5 ≥ 3} is equal to the event {X1 = 1}, which has probability 0.5.

Problem 5 (6 points) Let Z be a Gauss-Markov process with mean zero and autocorrelation
function RZ(τ) = e−|τ |. Find P [Z2 ≥ 1 + Z1|Z1 = 2, Z0 = 0].
Since Z is a Markov process, the conditional distribution of Z2 given Z0 and Z1 depends only on Z1. Note the if Z2

is estimated by Z1, then the minimum mean square error estimator is E[Z2|Z1] = Cov(Z2,Z1)Z1

Var(Z1)
= e−1Z1, and the

estimation error is independent of Z1 and is Gaussian with mean zero and variance Var(Z2)− Cov(Z2,Z1)2

Var(Z1)
= 1− e−2.

Thus, given Z1 = 2, the conditional distribution of Z2 is Gaussian with mean 2e−1 and variance 1− e−2. Thus, the

desired conditional probability is the same as the probabilty a N(2e−1, 1 − e−2) random variable is greater than or

equal to 3. This probability is Q

(
3−2e−1√

1−e−2

)
.

Problem 6 (10 points) Let X be a real-valued, mean zero stationary Gaussian process with
RX(τ) = e−|τ |. Let a > 0. Suppose X0 is estimated by X̂0 = c1X−a + c2Xa where the constants c1

and c2 are chosen to minimize the mean square error (MSE).
(a) Use the orthogonality principle to find c1, c2, and the resulting minimum MSE, E[(X0− X̂0)2].
(Your answers should depend only on a.)
(b) Use the orthogonality principle again to show that X̂0 as defined above is the minimum MSE
estimator of X0 given (Xs : |s| ≥ a). (This implies that X has a two-sided Markov property.) (a)The

constants must be selected so that X0 − X̂0 ⊥ Xa and X0 − X̂0 ⊥ X−a., or equivalently e−a − [c1e
−2a + c2] = 0 and
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e−a − [c1 + c2e
−2a] = 0. Solving for c1 and c2 (one could begin by subtracting the two equations) yields c1 = c2 = c

where c = e−a

1+e−2a = 1
ea+e−a = 1

2cosh(a)
.

The corresponding minimum MSE is given by E[X2
0 ]−E[X̂2

0 ] = 1−c2E[(X−a +Xa)2] = 1−c2(2+2e−2a) = 1−e−2a

1+e2a =

Tanh(a).

(b) The claim is true if (X0 − X̂0) ⊥ Xu whenever |u| ≥ a.

If u ≥ a then E[(X0 − c(X−a + Xa))Xu] = e−u − 1
ea+e−a (e−a−u + ea−u) = 0.

Similarly if u ≤ −a then E[(X0 − c(X−a + Xa))Xu] = eu − 1
ea+e−a (ea+u + e−a+u) = 0.

The orthogonality condition is thus true whenever |u| ≥ a, as required.

Problem 7 (12 points)
Suppose X and N are jointly WSS, mean zero, continuous time random processes with RXN ≡ 0.
The processes are the inputs to a system with the block diagram shown, for some transfer functions
K1(ω) and K2(ω):

K2+1K
Y=X    +N   outoutX

N
Suppose that for every value of ω, Ki(ω) 6= 0 for i = 1 and i = 2. Because the two subsystems are
linear, we can view the output process Y as the sum of two processes, Xout, due to the input X,
plus Nout, due to the input N . Your answers to the first four parts should be expressed in terms
of K1, K2, and the power spectral densities SX and SN .
(a) What is the power spectral density SY ?
(b) What is the signal-to-noise ratio at the output (equal to the power of Xout divided by the power
of Nout)?
(c) Suppose Y is passed into a linear system with transfer function H, designed so that the output
at time t is X̂t, the best (not necessarily causal) linear estimator of Xt given (Ys : s ∈ IR). Find
H.
(d) Find the resulting minimum mean square error.
(e) The correct answer to part (d) (the minimum MSE) does not depend on the filter K2. Why?
(a) SY = |K1K2|2SX + |K2|2SN , where for notational brevity we suppress the argument (ω) for each function.

(b) SNRoutput =
∫∞
−∞ |K1K2|2SX

dω
2π∫∞

−∞ |K2|2SN
dω
2π

.

(c) H = SXY
SY

= K1K2SX
|K1K2|2SX+|K2|2SN

.

(d)

MMSE =

∫ ∞

−∞
SX − SY |H|2

dω

2π

=

∫ ∞

−∞

|K2|2SXSN

|K1|2|K2|2SX + |K2|2SN

dω

2π

=

∫ ∞

−∞

SXSN

|K1|2SX + SN

dω

2π

(e) Since K2 is invertible, for the purposes of linear estimation of X, using the process Y is the same as using the

process Y filtered using a system with transfer function 1
K2(ω)

. Equivalently, the estimate of X would be the same if

the filter K2 were dropped from the original system.
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