Solutions to ECE 434 Final Exam, Spring 2003

Problem 1 (21 points) Indicate true or false for each statement below and justify your answers. (One third credit is assigned for correct true/false answer without correct justification.)
(a) If $\mathcal{H}(z)$ is a positive type z-transform, then so is $\cosh (\mathcal{H}(z))$. (Recall that $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$.)
(b) If X is a m.s. differentiable stationary Gaussian random process, then for t fixed, X_{t} is independent of the derivative at time $t: X_{t}^{\prime}$.
(c) If $X=\left(X_{t}: t \in \mathbb{R}\right)$ is a WSS, m.s. differentiable, mean zero random process, then X is mean ergodic in the mean square sense.
(d) If $M=\left(M_{t}: t \geq 0\right)$ is a martingale with $E\left[M_{t}^{2}\right]<\infty$ for each t, then $E\left[M_{t}^{2}\right]$ is increasing in t (i.e. $E\left[M_{s}^{2}\right] \leq E\left[M_{t}^{2}\right]$ whenever $s \leq t$.)
(e) If X_{1}, X_{2}, \ldots, is a sequence of independent, exponentially distributed random variables with mean one, then there is a finite constant K such that $P\left[X_{1}+\cdots+X_{n} \geq 2 n\right] \leq K \exp \left(-n^{2}\right)$ for all n.
(f) If X and Y are random variables such that $E\left[X^{2}\right]<\infty$ and $E[X \mid Y]=Y$, then $E\left[X^{2} \mid Y^{2}\right]=E[X \mid Y]^{2}$.
(g) If $N=\left(N_{t}: t \geq 0\right)$ is a random process with $E\left[N_{t}\right]=\lambda t$ and $E\left[N_{s} N_{t}\right]=\lambda \min \{s, t\}$ for $s, t \geq 0$, then N is a Poisson process.
(a) TRUE, The power series expansion of $\cosh (z)$ about zero is absolutely convergent yielding $\cosh (\mathcal{H}(z))=1+\frac{(\mathcal{H}(z))^{2}}{2!}+\frac{(\mathcal{H}(z))^{4}}{4!}+\cdots$, and sums and products of positive type functions are positive type.
(b) TRUE, since $C_{X^{\prime} X}(0)=C_{X}^{\prime}(0)=0$, and uncorrelated Gaussians are independent.
(c) FALSE, for a counter example let $X_{t}=U$ for all t, where U is a mean zero random variable with $0<\operatorname{Var}(U)<\infty$.
(d) TRUE, since for $s<t,\left(M_{t}-M_{s}\right) \perp M_{s}$, so $E\left[M_{t}^{2}\right]=E\left[M_{s}^{2}\right]+E\left[\left(M_{t}-M_{s}\right)^{2}\right] \geq E\left[M_{s}^{2}\right]$.
(e) FALSE, since Cramèrs theorem implies that for any $\epsilon>0, P\left[X_{1}+\cdots+X_{n} \geq 2 n\right] \geq \exp (-(l(2)+\epsilon) n)$ for all sufficiently large n.
(f) FALSE. For example let X have mean zero and positive variance, and let $Y \equiv 0$.
(g) FALSE. For example it could be that $N_{t}=W_{t}+\lambda t$, where W is a Wiener process with parameter $\sigma^{2}=\lambda$.

Problem 2 (12 points) Let N be a Poisson random process with rate $\lambda>0$ and let $Y_{t}=\int_{0}^{t} N_{s} d s$.
(a) Sketch a typical sample path of Y and find $E\left[Y_{t}\right]$.
(b) Is Y m.s. differentiable? Justify your answer.
(c) Is Y Markov? Justify your answer.
(d) Is Y a martingale? Justify your answer.
(a) Your sketch should show that Y is continuous and piecewise linear. The slope of Y is 0 on the first interval, 1 on the second interval, 2 on the third interval, etc. $E\left[Y_{t}\right]=\int_{0}^{t} E\left[N_{s}\right] d s=\int_{0}^{t} \lambda s d s=\frac{\lambda t^{2}}{2}$.
(b) YES, since the integral of a m.s. continuous process is m.s. differentiable. $Y^{\prime}=N$.
(c) N0, because knowing both Y_{t} and $Y_{t-\epsilon}$ for a small $\epsilon>0$ determines the slope N_{t} with high probability, allowing a better prediction of $Y_{t+\epsilon}$ than knowing Y_{t} alone.
(d) NO, for example because a requirement for Y to be a martingale is $E\left[Y_{t}\right]=E\left[Y_{0}\right]$ for all t.

Problem 3 (12 points) Let $X_{t}=U \sqrt{2} \cos (2 \pi t)+V \sqrt{2} \sin (2 \pi t)$ for $0 \leq t \leq 1$, where U and V are independent, $N(0,1)$ random variables, and let $N=\left(N_{\tau}: 0 \leq \tau \leq 1\right)$ denote a real-valued Gaussian white noise process with $R_{N}(\tau)=\sigma^{2} \delta(\tau)$ for some $\sigma^{2} \geq 0$. Suppose X and N are independent. Let $Y=\left(Y_{t}=X_{t}+N_{t}: 0 \leq t \leq 1\right)$. Think of X as a signal, N as noise, and Y as an observation. (a) Describe the Karhunen-Loève expansion of X. In particular, identify the nonzero eigenvalue(s) and the corresponding eigenfunctions.
There is a complete orthonormal basis of functions ($\phi_{n}: n \geq 1$) which includes the eigenfunctions found in part (a) (the particular choice is not important here), and the Karhunen-Loève expansions of N and Y can be given using such basis. Let $\tilde{N}_{i}=\left(N, \phi_{i}\right)=\int_{0}^{1} N_{t} \phi_{i}(t) d t$ denote the $i^{\text {th }}$
coordinate of N. The coordinates $\left(\tilde{N}_{1}, \tilde{N}_{2}, \ldots\right)$ are $N\left(0, \sigma^{2}\right)$ random variables and $U, V, \tilde{N}_{1}, \tilde{N}_{2}, \ldots$ are independent. Consider the Karhunen-Loève expansion of Y, using the same orthonormal basis. (b) Express the coordinates of Y in terms of $U, V, \tilde{N}_{1}, \tilde{N}_{2}, \ldots$ and identify the corresponding eigenvalues (i.e. the eigenvalues of $\left(R_{Y}(s, t): 0 \leq s, t \leq 1\right)$).
(c) Describe the minimum mean square error estimator \widehat{U} of U given $Y=\left(Y_{t}: 0 \leq t \leq 1\right)$, and find the minimum mean square error. Use the fact that observing Y is equivalent to observing the random coordinates appearing in the KL expansion of Y.
(a)Let $\phi_{1}(t)=\sqrt{2} \cos (2 \pi t)$ and $\phi_{2}(t)=\sqrt{2} \sin (2 \pi t)$. Then ϕ_{1} and ϕ_{2} are orthonormal and the K-L expansion of X is simply $X=U \phi_{1}(t)+V \phi_{2}(t)$. The nonzero eigenvalues are $\lambda_{1}=\lambda_{2}=1$. We could write $X \leftrightarrow(U, V, 0,0, \ldots)$. Remark: Since $\lambda_{1}=\lambda_{2}$, any linear combination of these two eigenfunctions is also an eigenfunction. Any two orthonormal functions with the same linear span as ϕ_{1} and ϕ_{2} could be used in place of the two functions given. For example, another correct choice of eigenfunctions is $\xi_{n}(\omega)=\exp (2 \pi j n t)$ for integers n. We also know this choice works because X is a WSS periodic random process. For this choice, ξ_{1} and ξ_{-1} are the eigenfunctions with corresponding eigenvalues $\lambda_{-1}=\lambda_{1}=1$, and $\left\{\xi_{1}, \xi_{-1}\right\}$ and $\left\{\phi_{1}, \phi_{2}\right\}$ have the same linear span.
(b) $Y \leftrightarrow\left(U+\tilde{N}_{1}, V+\tilde{N}_{2}, \tilde{N}_{3}, \tilde{N}_{4}, \ldots\right)$ and the eigenvalues are $2,2,1,1, \ldots$. (c) Observing $Y=\left(Y_{t}: 0 \leq t \leq 1\right)$ is equivalent to observing the coordinates of Y. Only the first coordinate of Y is relevant - the other coordinates of Y are independent of U and the first coordinate of Y. Thus, we need to estimate U given \tilde{Y}_{1}, where $\tilde{Y}_{1}=\left(Y, \phi_{1}\right)=U+\tilde{N}_{1}$. The estimate is given by $\frac{\operatorname{Cov}\left(U, \tilde{Y}_{1}\right)}{\operatorname{Var}\left(\tilde{Y}_{1}\right)} \tilde{Y}_{1}=\frac{1}{1+\sigma^{2}} \tilde{Y}_{1}$ and the covariance of error is $\frac{\operatorname{Var}(U) \operatorname{Var}\left(\tilde{N}_{1}\right)}{\operatorname{Var}(U)+\operatorname{Var}\left(\tilde{N}_{1}\right)}=\frac{\sigma^{2}}{1+\sigma^{2}}$.
Problem 4 (7 points) Let ($X_{k}: k \in \mathbb{Z}$) be a stationary discrete-time Markov process with state space $\{0,1\}$ and one-step transition probability matrix $P=\left(\begin{array}{cc}3 / 4 & 1 / 4 \\ 1 / 4 & 3 / 4\end{array}\right)$. Let $Y=\left(Y_{t}: t \in \mathbb{R}\right)$ be defined by $Y_{t}=X_{0}+\left(t \times X_{1}\right)$.
(a) Find the mean and covariance functions of Y.
(b) Find $P\left[Y_{5} \geq 3\right]$.
(a) The distribution of X_{k} for any k is the probability vector π solving $\pi=P \pi$, or $\pi=\left(\frac{1}{2}, \frac{1}{2}\right)$. Thus $P\left[\left(X_{0}, X_{1}\right)=\right.$ $(0,0)]=P\left[\left(X_{0}, X_{1}\right)=(1,1)\right]=\frac{1}{2} \frac{3}{4}=\frac{3}{8}$, and $P\left[\left(X_{0}, X_{1}\right)=(0,1)\right]=P\left[\left(X_{0}, X_{1}\right)=(1,0)\right]=\frac{1}{2} \frac{1}{4}=\frac{1}{8}$. Thus, $E\left[X_{i}\right]=E\left[X_{i}^{2}\right]=\frac{1}{2}$ and $E\left[X_{0} X_{1}\right]=\frac{3}{8}$ so $\operatorname{Var}\left(X_{i}\right)=\frac{1}{4}$ and $\operatorname{Cov}\left(X_{0}, X_{1}\right)=\frac{3}{8}-\left(\frac{1}{2}\right)^{2}=\frac{1}{8}$. Thus, $E\left[Y_{t}\right]=\frac{1+t}{2}$ and $\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=\operatorname{Cov}\left(X_{0}+s X_{1}, X_{0}+t X_{1}\right)=\operatorname{Var}\left(X_{0}\right)+(s+t) \operatorname{Cov}\left(X_{0}, X_{1}\right)+s t \operatorname{Var}\left(X_{1}\right)=\frac{1}{4}+\frac{s+t}{8}+\frac{s t}{4}$.
(b) Since $Y_{5}=X_{0}+5 X_{1}$, the event $\left\{Y_{5} \geq 3\right\}$ is equal to the event $\left\{X_{1}=1\right\}$, which has probability 0.5 .

Problem 5 (6 points) Let Z be a Gauss-Markov process with mean zero and autocorrelation function $R_{Z}(\tau)=e^{-|\tau|}$. Find $P\left[Z_{2} \geq 1+Z_{1} \mid Z_{1}=2, Z_{0}=0\right]$.
Since Z is a Markov process, the conditional distribution of Z_{2} given Z_{0} and Z_{1} depends only on Z_{1}. Note the if Z_{2} is estimated by Z_{1}, then the minimum mean square error estimator is $E\left[Z_{2} \mid Z_{1}\right]=\frac{\operatorname{Cov}\left(Z_{2}, Z_{1}\right) Z_{1}}{\operatorname{Var}\left(Z_{1}\right)}=e^{-1} Z_{1}$, and the estimation error is independent of Z_{1} and is Gaussian with mean zero and variance $\operatorname{Var}\left(Z_{2}\right)-\frac{\operatorname{Cov}\left(Z_{2}, Z_{1}\right)^{2}}{\operatorname{Var}\left(Z_{1}\right)}=1-e^{-2}$. Thus, given $Z_{1}=2$, the conditional distribution of Z_{2} is Gaussian with mean $2 e^{-1}$ and variance $1-e^{-2}$. Thus, the desired conditional probability is the same as the probabilty a $N\left(2 e^{-1}, 1-e^{-2}\right)$ random variable is greater than or equal to 3 . This probability is $Q\left(\frac{3-2 e^{-1}}{\sqrt{1-e^{-2}}}\right)$.
Problem 6 (10 points) Let X be a real-valued, mean zero stationary Gaussian process with $R_{X}(\tau)=e^{-|\tau|}$. Let $a>0$. Suppose X_{0} is estimated by $\widehat{X}_{0}=c_{1} X_{-a}+c_{2} X_{a}$ where the constants c_{1} and c_{2} are chosen to minimize the mean square error (MSE).
(a) Use the orthogonality principle to find c_{1}, c_{2}, and the resulting minimum $\operatorname{MSE}, E\left[\left(X_{0}-\widehat{X}_{0}\right)^{2}\right]$. (Your answers should depend only on a.)
(b) Use the orthogonality principle again to show that \widehat{X}_{0} as defined above is the minimum MSE estimator of X_{0} given $\left(X_{s}:|s| \geq a\right)$. (This implies that X has a two-sided Markov property.) (a)The constants must be selected so that $X_{0}-\widehat{X}_{0} \perp X_{a}$ and $X_{0}-\widehat{X}_{0} \perp X_{-a}$, or equivalently $e^{-a}-\left[c_{1} e^{-2 a}+c_{2}\right]=0$ and
$e^{-a}-\left[c_{1}+c_{2} e^{-2 a}\right]=0$. Solving for c_{1} and c_{2} (one could begin by subtracting the two equations) yields $c_{1}=c_{2}=c$ where $c=\frac{e^{-a}}{1+e^{-2 a}}=\frac{1}{e^{a}+e^{-a}}=\frac{1}{2 \cosh (a)}$.
The corresponding minimum MSE is given by $E\left[X_{0}^{2}\right]-E\left[\widehat{X}_{0}^{2}\right]=1-c^{2} E\left[\left(X_{-a}+X_{a}\right)^{2}\right]=1-c^{2}\left(2+2 e^{-2 a}\right)=\frac{1-e^{-2 a}}{1+e^{2 a}}=$ Tanh (a).
(b) The claim is true if $\left(X_{0}-\widehat{X}_{0}\right) \perp X_{u}$ whenever $|u| \geq a$.

If $u \geq a$ then $E\left[\left(X_{0}-c\left(X_{-a}+X_{a}\right)\right) X_{u}\right]=e^{-u}-\frac{1}{e^{a}+e^{-a}}\left(e^{-a-u}+e^{a-u}\right)=0$.
Similarly if $u \leq-a$ then $E\left[\left(X_{0}-c\left(X_{-a}+X_{a}\right)\right) X_{u}\right]=e^{u}-\frac{1}{e^{a}+e^{-a}}\left(e^{a+u}+e^{-a+u}\right)=0$.
The orthogonality condition is thus true whenever $|u| \geq a$, as required.
Problem 7 (12 points)
Suppose X and N are jointly WSS, mean zero, continuous time random processes with $R_{X N} \equiv 0$. The processes are the inputs to a system with the block diagram shown, for some transfer functions $K_{1}(\omega)$ and $K_{2}(\omega)$:

Suppose that for every value of $\omega, K_{i}(\omega) \neq 0$ for $i=1$ and $i=2$. Because the two subsystems are linear, we can view the output process Y as the sum of two processes, $X_{o u t}$, due to the input X, plus $N_{\text {out }}$, due to the input N. Your answers to the first four parts should be expressed in terms of K_{1}, K_{2}, and the power spectral densities S_{X} and S_{N}.
(a) What is the power spectral density S_{Y} ?
(b) What is the signal-to-noise ratio at the output (equal to the power of $X_{\text {out }}$ divided by the power of $N_{\text {out }}$)?
(c) Suppose Y is passed into a linear system with transfer function H, designed so that the output at time t is \widehat{X}_{t}, the best (not necessarily causal) linear estimator of X_{t} given $\left(Y_{s}: s \in \mathbb{R}\right)$. Find H.
(d) Find the resulting minimum mean square error.
(e) The correct answer to part (d) (the minimum MSE) does not depend on the filter K_{2}. Why?
(a) $S_{Y}=\left|K_{1} K_{2}\right|^{2} S_{X}+\left|K_{2}\right|^{2} S_{N}$, where for notational brevity we suppress the argument (ω) for each function.
(b) $S N R_{\text {output }}=\frac{\int_{-\infty}^{\infty}\left|K_{1} K_{2}\right|^{2} S_{X} \frac{d \omega}{2 \pi}}{\int_{-\infty}^{\infty}\left|K_{2}\right|^{2} S_{N} \frac{d \omega}{2 \pi}}$.
(c) $H=\frac{S_{X Y}}{S_{Y}}=\frac{\overline{K_{1} K_{2}} S_{X}}{\left|K_{1} K_{2}\right|^{2} S_{X}+\left|K_{2}\right|^{2} S_{N}}$.
(d)

$$
\begin{aligned}
M M S E & =\int_{-\infty}^{\infty} S_{X}-S_{Y}|H|^{2} \frac{d \omega}{2 \pi} \\
& =\int_{-\infty}^{\infty} \frac{\left|K_{2}\right|^{2} S_{X} S_{N}}{\left|K_{1}\right|^{2}\left|K_{2}\right|^{2} S_{X}+\left|K_{2}\right|^{2} S_{N}} \frac{d \omega}{2 \pi} \\
& =\int_{-\infty}^{\infty} \frac{S_{X} S_{N}}{\left|K_{1}\right|^{2} S_{X}+S_{N}} \frac{d \omega}{2 \pi}
\end{aligned}
$$

(e) Since K_{2} is invertible, for the purposes of linear estimation of X, using the process Y is the same as using the process Y filtered using a system with transfer function $\frac{1}{K_{2}(\omega)}$. Equivalently, the estimate of X would be the same if the filter K_{2} were dropped from the original system.

